New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > consensus | GIF version |
Description: The consensus theorem. This theorem and its dual (with ∨ and ∧ interchanged) are commonly used in computer logic design to eliminate redundant terms from Boolean expressions. Specifically, we prove that the term (ψ ∧ χ) on the left-hand side is redundant. (Contributed by NM, 16-May-2003.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 20-Jan-2013.) |
Ref | Expression |
---|---|
consensus | ⊢ ((((φ ∧ ψ) ∨ (¬ φ ∧ χ)) ∨ (ψ ∧ χ)) ↔ ((φ ∧ ψ) ∨ (¬ φ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (((φ ∧ ψ) ∨ (¬ φ ∧ χ)) → ((φ ∧ ψ) ∨ (¬ φ ∧ χ))) | |
2 | orc 374 | . . . . 5 ⊢ ((φ ∧ ψ) → ((φ ∧ ψ) ∨ (¬ φ ∧ χ))) | |
3 | 2 | adantrr 697 | . . . 4 ⊢ ((φ ∧ (ψ ∧ χ)) → ((φ ∧ ψ) ∨ (¬ φ ∧ χ))) |
4 | olc 373 | . . . . 5 ⊢ ((¬ φ ∧ χ) → ((φ ∧ ψ) ∨ (¬ φ ∧ χ))) | |
5 | 4 | adantrl 696 | . . . 4 ⊢ ((¬ φ ∧ (ψ ∧ χ)) → ((φ ∧ ψ) ∨ (¬ φ ∧ χ))) |
6 | 3, 5 | pm2.61ian 765 | . . 3 ⊢ ((ψ ∧ χ) → ((φ ∧ ψ) ∨ (¬ φ ∧ χ))) |
7 | 1, 6 | jaoi 368 | . 2 ⊢ ((((φ ∧ ψ) ∨ (¬ φ ∧ χ)) ∨ (ψ ∧ χ)) → ((φ ∧ ψ) ∨ (¬ φ ∧ χ))) |
8 | orc 374 | . 2 ⊢ (((φ ∧ ψ) ∨ (¬ φ ∧ χ)) → (((φ ∧ ψ) ∨ (¬ φ ∧ χ)) ∨ (ψ ∧ χ))) | |
9 | 7, 8 | impbii 180 | 1 ⊢ ((((φ ∧ ψ) ∨ (¬ φ ∧ χ)) ∨ (ψ ∧ χ)) ↔ ((φ ∧ ψ) ∨ (¬ φ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |