NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  consensus GIF version

Theorem consensus 925
Description: The consensus theorem. This theorem and its dual (with and interchanged) are commonly used in computer logic design to eliminate redundant terms from Boolean expressions. Specifically, we prove that the term (ψ χ) on the left-hand side is redundant. (Contributed by NM, 16-May-2003.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 20-Jan-2013.)
Assertion
Ref Expression
consensus ((((φ ψ) φ χ)) (ψ χ)) ↔ ((φ ψ) φ χ)))

Proof of Theorem consensus
StepHypRef Expression
1 id 19 . . 3 (((φ ψ) φ χ)) → ((φ ψ) φ χ)))
2 orc 374 . . . . 5 ((φ ψ) → ((φ ψ) φ χ)))
32adantrr 697 . . . 4 ((φ (ψ χ)) → ((φ ψ) φ χ)))
4 olc 373 . . . . 5 ((¬ φ χ) → ((φ ψ) φ χ)))
54adantrl 696 . . . 4 ((¬ φ (ψ χ)) → ((φ ψ) φ χ)))
63, 5pm2.61ian 765 . . 3 ((ψ χ) → ((φ ψ) φ χ)))
71, 6jaoi 368 . 2 ((((φ ψ) φ χ)) (ψ χ)) → ((φ ψ) φ χ)))
8 orc 374 . 2 (((φ ψ) φ χ)) → (((φ ψ) φ χ)) (ψ χ)))
97, 8impbii 180 1 ((((φ ψ) φ χ)) (ψ χ)) ↔ ((φ ψ) φ χ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator