New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.53 | GIF version |
Description: Theorem *4.53 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.53 | ⊢ (¬ (φ ∧ ¬ ψ) ↔ (¬ φ ∨ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.52 477 | . . 3 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (¬ φ ∨ ψ)) | |
2 | 1 | con2bii 322 | . 2 ⊢ ((¬ φ ∨ ψ) ↔ ¬ (φ ∧ ¬ ψ)) |
3 | 2 | bicomi 193 | 1 ⊢ (¬ (φ ∧ ¬ ψ) ↔ (¬ φ ∨ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: undif3 3516 |
Copyright terms: Public domain | W3C validator |