| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm4.52 | GIF version | ||
| Description: Theorem *4.52 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm4.52 | ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (¬ φ ∨ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annim 414 | . 2 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) | |
| 2 | imor 401 | . 2 ⊢ ((φ → ψ) ↔ (¬ φ ∨ ψ)) | |
| 3 | 1, 2 | xchbinx 301 | 1 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (¬ φ ∨ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: pm4.53 478 |
| Copyright terms: Public domain | W3C validator |