NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  npss GIF version

Theorem npss 3380
Description: A class is not a proper subclass of another iff it satisfies a one-directional form of eqss 3288. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
npss AB ↔ (A BA = B))

Proof of Theorem npss
StepHypRef Expression
1 pm4.61 415 . . 3 (¬ (A BA = B) ↔ (A B ¬ A = B))
2 dfpss2 3355 . . 3 (AB ↔ (A B ¬ A = B))
31, 2bitr4i 243 . 2 (¬ (A BA = B) ↔ AB)
43con1bii 321 1 AB ↔ (A BA = B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358   = wceq 1642   wss 3258  wpss 3259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-ne 2519  df-pss 3262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator