![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > annim | GIF version |
Description: Express conjunction in terms of implication. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
annim | ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 413 | . 2 ⊢ ((φ → ψ) ↔ ¬ (φ ∧ ¬ ψ)) | |
2 | 1 | con2bii 322 | 1 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm4.61 415 pm4.52 477 xordi 865 exanali 1585 19.35 1600 rexanali 2660 r19.35 2758 difin0ss 3616 dfpw2 4327 nnsucelrlem1 4424 evenodddisjlem1 4515 nnadjoinlem1 4519 sfintfinlem1 4531 tfinnnlem1 4533 nchoicelem10 6298 nchoicelem11 6299 |
Copyright terms: Public domain | W3C validator |