NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  annim GIF version

Theorem annim 414
Description: Express conjunction in terms of implication. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
annim ((φ ¬ ψ) ↔ ¬ (φψ))

Proof of Theorem annim
StepHypRef Expression
1 iman 413 . 2 ((φψ) ↔ ¬ (φ ¬ ψ))
21con2bii 322 1 ((φ ¬ ψ) ↔ ¬ (φψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  pm4.61  415  pm4.52  477  xordi  865  exanali  1585  19.35  1600  rexanali  2661  r19.35  2759  difin0ss  3617  dfpw2  4328  nnsucelrlem1  4425  evenodddisjlem1  4516  nnadjoinlem1  4520  sfintfinlem1  4532  tfinnnlem1  4534  nchoicelem10  6299  nchoicelem11  6300
  Copyright terms: Public domain W3C validator