New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > annim | GIF version |
Description: Express conjunction in terms of implication. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
annim | ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 413 | . 2 ⊢ ((φ → ψ) ↔ ¬ (φ ∧ ¬ ψ)) | |
2 | 1 | con2bii 322 | 1 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm4.61 415 pm4.52 477 xordi 865 exanali 1585 19.35 1600 rexanali 2661 r19.35 2759 difin0ss 3617 dfpw2 4328 nnsucelrlem1 4425 evenodddisjlem1 4516 nnadjoinlem1 4520 sfintfinlem1 4532 tfinnnlem1 4534 nchoicelem10 6299 nchoicelem11 6300 |
Copyright terms: Public domain | W3C validator |