New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.83 | GIF version |
Description: Theorem *4.83 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.83 | ⊢ (((φ → ψ) ∧ (¬ φ → ψ)) ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 404 | . . 3 ⊢ (φ ∨ ¬ φ) | |
2 | 1 | a1bi 327 | . 2 ⊢ (ψ ↔ ((φ ∨ ¬ φ) → ψ)) |
3 | jaob 758 | . 2 ⊢ (((φ ∨ ¬ φ) → ψ) ↔ ((φ → ψ) ∧ (¬ φ → ψ))) | |
4 | 2, 3 | bitr2i 241 | 1 ⊢ (((φ → ψ) ∧ (¬ φ → ψ)) ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |