| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm4.83 | GIF version | ||
| Description: Theorem *4.83 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm4.83 | ⊢ (((φ → ψ) ∧ (¬ φ → ψ)) ↔ ψ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmid 404 | . . 3 ⊢ (φ ∨ ¬ φ) | |
| 2 | 1 | a1bi 327 | . 2 ⊢ (ψ ↔ ((φ ∨ ¬ φ) → ψ)) | 
| 3 | jaob 758 | . 2 ⊢ (((φ ∨ ¬ φ) → ψ) ↔ ((φ → ψ) ∧ (¬ φ → ψ))) | |
| 4 | 2, 3 | bitr2i 241 | 1 ⊢ (((φ → ψ) ∧ (¬ φ → ψ)) ↔ ψ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |