NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.19 GIF version

Theorem pm5.19 349
Description: Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.19 ¬ (φ ↔ ¬ φ)

Proof of Theorem pm5.19
StepHypRef Expression
1 biid 227 . 2 (φφ)
2 pm5.18 345 . 2 ((φφ) ↔ ¬ (φ ↔ ¬ φ))
31, 2mpbi 199 1 ¬ (φ ↔ ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  ru  3046  necompl  3545  nenpw1pwlem2  6086
  Copyright terms: Public domain W3C validator