Step | Hyp | Ref
| Expression |
1 | | pm5.19 349 |
. . . . 5
⊢ ¬ (y ∈ S ↔ ¬ y
∈ S) |
2 | 1 | a1i 10 |
. . . 4
⊢ (y ∈ A → ¬ (y ∈ S ↔ ¬ y
∈ S)) |
3 | 2 | nrex 2717 |
. . 3
⊢ ¬ ∃y ∈ A (y ∈ S ↔ ¬ y
∈ S) |
4 | 3 | nex 1555 |
. 2
⊢ ¬ ∃r∃y ∈ A (y ∈ S ↔ ¬ y
∈ S) |
5 | | bren 6031 |
. . 3
⊢ (℘1A ≈ ℘A ↔
∃r
r:℘1A–1-1-onto→℘A) |
6 | | f1odm 5291 |
. . . . . . . . 9
⊢ (r:℘1A–1-1-onto→℘A → dom
r = ℘1A) |
7 | | vex 2863 |
. . . . . . . . . 10
⊢ r ∈
V |
8 | 7 | dmex 5107 |
. . . . . . . . 9
⊢ dom r ∈
V |
9 | 6, 8 | syl6eqelr 2442 |
. . . . . . . 8
⊢ (r:℘1A–1-1-onto→℘A →
℘1A ∈
V) |
10 | | pw1exb 4327 |
. . . . . . . 8
⊢ (℘1A ∈ V ↔
A ∈
V) |
11 | 9, 10 | sylib 188 |
. . . . . . 7
⊢ (r:℘1A–1-1-onto→℘A →
A ∈
V) |
12 | | nenpw1pwlem2.1 |
. . . . . . . 8
⊢ S = {x ∈ A ∣ ¬ x
∈ (r
‘{x})} |
13 | 12 | nenpw1pwlem1 6085 |
. . . . . . 7
⊢ (A ∈ V →
S ∈
V) |
14 | 11, 13 | syl 15 |
. . . . . 6
⊢ (r:℘1A–1-1-onto→℘A →
S ∈
V) |
15 | | ssrab2 3352 |
. . . . . . . 8
⊢ {x ∈ A ∣ ¬
x ∈
(r ‘{x})} ⊆ A |
16 | 12, 15 | eqsstri 3302 |
. . . . . . 7
⊢ S ⊆ A |
17 | | elpwg 3730 |
. . . . . . 7
⊢ (S ∈ V →
(S ∈
℘A
↔ S ⊆ A)) |
18 | 16, 17 | mpbiri 224 |
. . . . . 6
⊢ (S ∈ V →
S ∈ ℘A) |
19 | 14, 18 | syl 15 |
. . . . 5
⊢ (r:℘1A–1-1-onto→℘A →
S ∈ ℘A) |
20 | | f1ofo 5294 |
. . . . . . . 8
⊢ (r:℘1A–1-1-onto→℘A →
r:℘1A–onto→℘A) |
21 | | forn 5273 |
. . . . . . . 8
⊢ (r:℘1A–onto→℘A → ran r =
℘A) |
22 | 20, 21 | syl 15 |
. . . . . . 7
⊢ (r:℘1A–1-1-onto→℘A → ran
r = ℘A) |
23 | 22 | eleq2d 2420 |
. . . . . 6
⊢ (r:℘1A–1-1-onto→℘A →
(S ∈ ran
r ↔ S ∈ ℘A)) |
24 | | elrn 4897 |
. . . . . . 7
⊢ (S ∈ ran r ↔ ∃u urS) |
25 | | breldm 4912 |
. . . . . . . . . . . 12
⊢ (urS → u ∈ dom r) |
26 | 25 | adantl 452 |
. . . . . . . . . . 11
⊢ ((r:℘1A–1-1-onto→℘A ∧ urS) →
u ∈ dom
r) |
27 | 6 | adantr 451 |
. . . . . . . . . . 11
⊢ ((r:℘1A–1-1-onto→℘A ∧ urS) → dom
r = ℘1A) |
28 | 26, 27 | eleqtrd 2429 |
. . . . . . . . . 10
⊢ ((r:℘1A–1-1-onto→℘A ∧ urS) →
u ∈ ℘1A) |
29 | | elpw1 4145 |
. . . . . . . . . . 11
⊢ (u ∈ ℘1A ↔ ∃y ∈ A u = {y}) |
30 | | breq1 4643 |
. . . . . . . . . . . . . . . 16
⊢ (u = {y} →
(urS ↔
{y}rS)) |
31 | 30 | 3anbi2d 1257 |
. . . . . . . . . . . . . . 15
⊢ (u = {y} →
((r:℘1A–1-1-onto→℘A ∧ urS ∧ y ∈ A) ↔
(r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A))) |
32 | | id 19 |
. . . . . . . . . . . . . . . . . . 19
⊢ (x = y →
x = y) |
33 | | sneq 3745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (x = y →
{x} = {y}) |
34 | 33 | fveq2d 5333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (x = y →
(r ‘{x}) = (r
‘{y})) |
35 | 32, 34 | eleq12d 2421 |
. . . . . . . . . . . . . . . . . 18
⊢ (x = y →
(x ∈
(r ‘{x}) ↔ y
∈ (r
‘{y}))) |
36 | 35 | notbid 285 |
. . . . . . . . . . . . . . . . 17
⊢ (x = y →
(¬ x ∈ (r
‘{x}) ↔ ¬ y ∈ (r ‘{y}))) |
37 | 36, 12 | elrab2 2997 |
. . . . . . . . . . . . . . . 16
⊢ (y ∈ S ↔ (y
∈ A ∧ ¬ y ∈ (r
‘{y}))) |
38 | | simp3 957 |
. . . . . . . . . . . . . . . . . 18
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
y ∈
A) |
39 | 38 | biantrurd 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
(¬ y ∈ (r
‘{y}) ↔ (y ∈ A ∧ ¬ y ∈ (r ‘{y})))) |
40 | | simp2 956 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
{y}rS) |
41 | | f1ofn 5289 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (r:℘1A–1-1-onto→℘A →
r Fn ℘1A) |
42 | 41 | 3ad2ant1 976 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
r Fn ℘1A) |
43 | | snelpw1 4147 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({y} ∈ ℘1A ↔ y ∈ A) |
44 | 43 | biimpri 197 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (y ∈ A → {y}
∈ ℘1A) |
45 | 44 | 3ad2ant3 978 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
{y} ∈
℘1A) |
46 | | fnbrfvb 5359 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((r Fn ℘1A ∧ {y} ∈ ℘1A) → ((r
‘{y}) = S ↔ {y}rS)) |
47 | 42, 45, 46 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
((r ‘{y}) = S ↔
{y}rS)) |
48 | 40, 47 | mpbird 223 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
(r ‘{y}) = S) |
49 | 48 | eleq2d 2420 |
. . . . . . . . . . . . . . . . . 18
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
(y ∈
(r ‘{y}) ↔ y
∈ S)) |
50 | 49 | notbid 285 |
. . . . . . . . . . . . . . . . 17
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
(¬ y ∈ (r
‘{y}) ↔ ¬ y ∈ S)) |
51 | 39, 50 | bitr3d 246 |
. . . . . . . . . . . . . . . 16
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
((y ∈
A ∧ ¬
y ∈
(r ‘{y})) ↔ ¬ y ∈ S)) |
52 | 37, 51 | syl5bb 248 |
. . . . . . . . . . . . . . 15
⊢ ((r:℘1A–1-1-onto→℘A ∧ {y}rS ∧ y ∈ A) →
(y ∈
S ↔ ¬ y ∈ S)) |
53 | 31, 52 | syl6bi 219 |
. . . . . . . . . . . . . 14
⊢ (u = {y} →
((r:℘1A–1-1-onto→℘A ∧ urS ∧ y ∈ A) →
(y ∈
S ↔ ¬ y ∈ S))) |
54 | 53 | com12 27 |
. . . . . . . . . . . . 13
⊢ ((r:℘1A–1-1-onto→℘A ∧ urS ∧ y ∈ A) →
(u = {y} → (y
∈ S
↔ ¬ y ∈ S))) |
55 | 54 | 3expa 1151 |
. . . . . . . . . . . 12
⊢ (((r:℘1A–1-1-onto→℘A ∧ urS) ∧ y ∈ A) →
(u = {y} → (y
∈ S
↔ ¬ y ∈ S))) |
56 | 55 | reximdva 2727 |
. . . . . . . . . . 11
⊢ ((r:℘1A–1-1-onto→℘A ∧ urS) →
(∃y
∈ A
u = {y}
→ ∃y ∈ A (y ∈ S ↔
¬ y ∈
S))) |
57 | 29, 56 | syl5bi 208 |
. . . . . . . . . 10
⊢ ((r:℘1A–1-1-onto→℘A ∧ urS) →
(u ∈
℘1A → ∃y ∈ A (y ∈ S ↔ ¬ y
∈ S))) |
58 | 28, 57 | mpd 14 |
. . . . . . . . 9
⊢ ((r:℘1A–1-1-onto→℘A ∧ urS) → ∃y ∈ A (y ∈ S ↔ ¬ y
∈ S)) |
59 | 58 | ex 423 |
. . . . . . . 8
⊢ (r:℘1A–1-1-onto→℘A →
(urS → ∃y ∈ A (y ∈ S ↔ ¬ y
∈ S))) |
60 | 59 | exlimdv 1636 |
. . . . . . 7
⊢ (r:℘1A–1-1-onto→℘A →
(∃u
urS → ∃y ∈ A (y ∈ S ↔ ¬ y
∈ S))) |
61 | 24, 60 | syl5bi 208 |
. . . . . 6
⊢ (r:℘1A–1-1-onto→℘A →
(S ∈ ran
r → ∃y ∈ A (y ∈ S ↔ ¬ y
∈ S))) |
62 | 23, 61 | sylbird 226 |
. . . . 5
⊢ (r:℘1A–1-1-onto→℘A →
(S ∈
℘A
→ ∃y ∈ A (y ∈ S ↔
¬ y ∈
S))) |
63 | 19, 62 | mpd 14 |
. . . 4
⊢ (r:℘1A–1-1-onto→℘A →
∃y ∈ A (y ∈ S ↔ ¬ y
∈ S)) |
64 | 63 | eximi 1576 |
. . 3
⊢ (∃r r:℘1A–1-1-onto→℘A →
∃r∃y ∈ A (y ∈ S ↔ ¬ y
∈ S)) |
65 | 5, 64 | sylbi 187 |
. 2
⊢ (℘1A ≈ ℘A →
∃r∃y ∈ A (y ∈ S ↔ ¬ y
∈ S)) |
66 | 4, 65 | mto 167 |
1
⊢ ¬ ℘1A ≈ ℘A |