| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.24 | GIF version | ||
| Description: Theorem *5.24 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.24 | ⊢ (¬ ((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ)) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor 861 | . 2 ⊢ (¬ (φ ↔ ψ) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) | |
| 2 | dfbi3 863 | . 2 ⊢ ((φ ↔ ψ) ↔ ((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ))) | |
| 3 | 1, 2 | xchnxbi 299 | 1 ⊢ (¬ ((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ)) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |