| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm5.24 | GIF version | ||
| Description: Theorem *5.24 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm5.24 | ⊢ (¬ ((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ)) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xor 861 | . 2 ⊢ (¬ (φ ↔ ψ) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) | |
| 2 | dfbi3 863 | . 2 ⊢ ((φ ↔ ψ) ↔ ((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ))) | |
| 3 | 1, 2 | xchnxbi 299 | 1 ⊢ (¬ ((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ)) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |