| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > xor | GIF version | ||
| Description: Two ways to express "exclusive or." Theorem *5.22 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 22-Jan-2013.) |
| Ref | Expression |
|---|---|
| xor | ⊢ (¬ (φ ↔ ψ) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 413 | . . . 4 ⊢ ((φ → ψ) ↔ ¬ (φ ∧ ¬ ψ)) | |
| 2 | iman 413 | . . . 4 ⊢ ((ψ → φ) ↔ ¬ (ψ ∧ ¬ φ)) | |
| 3 | 1, 2 | anbi12i 678 | . . 3 ⊢ (((φ → ψ) ∧ (ψ → φ)) ↔ (¬ (φ ∧ ¬ ψ) ∧ ¬ (ψ ∧ ¬ φ))) |
| 4 | dfbi2 609 | . . 3 ⊢ ((φ ↔ ψ) ↔ ((φ → ψ) ∧ (ψ → φ))) | |
| 5 | ioran 476 | . . 3 ⊢ (¬ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ)) ↔ (¬ (φ ∧ ¬ ψ) ∧ ¬ (ψ ∧ ¬ φ))) | |
| 6 | 3, 4, 5 | 3bitr4ri 269 | . 2 ⊢ (¬ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ)) ↔ (φ ↔ ψ)) |
| 7 | 6 | con1bii 321 | 1 ⊢ (¬ (φ ↔ ψ) ↔ ((φ ∧ ¬ ψ) ∨ (ψ ∧ ¬ φ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: dfbi3 863 pm5.24 864 4exmid 905 excxor 1309 elsymdif 3224 symdif2 3521 |
| Copyright terms: Public domain | W3C validator |