New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xordi | GIF version |
Description: Conjunction distributes over exclusive-or, using ¬ (φ ↔ ψ) to express exclusive-or. This is one way to interpret the distributive law of multiplication over addition in modulo 2 arithmetic. (Contributed by NM, 3-Oct-2008.) |
Ref | Expression |
---|---|
xordi | ⊢ ((φ ∧ ¬ (ψ ↔ χ)) ↔ ¬ ((φ ∧ ψ) ↔ (φ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim 414 | . 2 ⊢ ((φ ∧ ¬ (ψ ↔ χ)) ↔ ¬ (φ → (ψ ↔ χ))) | |
2 | pm5.32 617 | . 2 ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ ∧ ψ) ↔ (φ ∧ χ))) | |
3 | 1, 2 | xchbinx 301 | 1 ⊢ ((φ ∧ ¬ (ψ ↔ χ)) ↔ ¬ ((φ ∧ ψ) ↔ (φ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |