NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xordi GIF version

Theorem xordi 865
Description: Conjunction distributes over exclusive-or, using ¬ (φψ) to express exclusive-or. This is one way to interpret the distributive law of multiplication over addition in modulo 2 arithmetic. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
xordi ((φ ¬ (ψχ)) ↔ ¬ ((φ ψ) ↔ (φ χ)))

Proof of Theorem xordi
StepHypRef Expression
1 annim 414 . 2 ((φ ¬ (ψχ)) ↔ ¬ (φ → (ψχ)))
2 pm5.32 617 . 2 ((φ → (ψχ)) ↔ ((φ ψ) ↔ (φ χ)))
31, 2xchbinx 301 1 ((φ ¬ (ψχ)) ↔ ¬ ((φ ψ) ↔ (φ χ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator