| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfbi3 | GIF version | ||
| Description: An alternate definition of the biconditional. Theorem *5.23 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| dfbi3 | ⊢ ((φ ↔ ψ) ↔ ((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor 861 | . 2 ⊢ (¬ (φ ↔ ¬ ψ) ↔ ((φ ∧ ¬ ¬ ψ) ∨ (¬ ψ ∧ ¬ φ))) | |
| 2 | pm5.18 345 | . 2 ⊢ ((φ ↔ ψ) ↔ ¬ (φ ↔ ¬ ψ)) | |
| 3 | notnot 282 | . . . 4 ⊢ (ψ ↔ ¬ ¬ ψ) | |
| 4 | 3 | anbi2i 675 | . . 3 ⊢ ((φ ∧ ψ) ↔ (φ ∧ ¬ ¬ ψ)) |
| 5 | ancom 437 | . . 3 ⊢ ((¬ φ ∧ ¬ ψ) ↔ (¬ ψ ∧ ¬ φ)) | |
| 6 | 4, 5 | orbi12i 507 | . 2 ⊢ (((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ)) ↔ ((φ ∧ ¬ ¬ ψ) ∨ (¬ ψ ∧ ¬ φ))) |
| 7 | 1, 2, 6 | 3bitr4i 268 | 1 ⊢ ((φ ↔ ψ) ↔ ((φ ∧ ψ) ∨ (¬ φ ∧ ¬ ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: pm5.24 864 4exmid 905 nanbi 1294 ifbi 3680 |
| Copyright terms: Public domain | W3C validator |