NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xchnxbi GIF version

Theorem xchnxbi 299
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchnxbi.1 φψ)
xchnxbi.2 (φχ)
Assertion
Ref Expression
xchnxbi χψ)

Proof of Theorem xchnxbi
StepHypRef Expression
1 xchnxbi.2 . . 3 (φχ)
21notbii 287 . 2 φ ↔ ¬ χ)
3 xchnxbi.1 . 2 φψ)
42, 3bitr3i 242 1 χψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  xchnxbir  300  ioran  476  pm5.24  864
  Copyright terms: Public domain W3C validator