New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xchnxbi | GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbi.1 | ⊢ (¬ φ ↔ ψ) |
xchnxbi.2 | ⊢ (φ ↔ χ) |
Ref | Expression |
---|---|
xchnxbi | ⊢ (¬ χ ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbi.2 | . . 3 ⊢ (φ ↔ χ) | |
2 | 1 | notbii 287 | . 2 ⊢ (¬ φ ↔ ¬ χ) |
3 | xchnxbi.1 | . 2 ⊢ (¬ φ ↔ ψ) | |
4 | 2, 3 | bitr3i 242 | 1 ⊢ (¬ χ ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: xchnxbir 300 ioran 476 pm5.24 864 |
Copyright terms: Public domain | W3C validator |