New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anbi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bi12d.1 | ⊢ (φ → (ψ ↔ χ)) |
bi12d.2 | ⊢ (φ → (θ ↔ τ)) |
Ref | Expression |
---|---|
anbi12d | ⊢ (φ → ((ψ ∧ θ) ↔ (χ ∧ τ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi12d.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | anbi1d 685 | . 2 ⊢ (φ → ((ψ ∧ θ) ↔ (χ ∧ θ))) |
3 | bi12d.2 | . . 3 ⊢ (φ → (θ ↔ τ)) | |
4 | 3 | anbi2d 684 | . 2 ⊢ (φ → ((χ ∧ θ) ↔ (χ ∧ τ))) |
5 | 2, 4 | bitrd 244 | 1 ⊢ (φ → ((ψ ∧ θ) ↔ (χ ∧ τ))) |
Copyright terms: Public domain | W3C validator |