NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.61 GIF version

Theorem pm5.61 693
Description: Theorem *5.61 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 30-Jun-2013.)
Assertion
Ref Expression
pm5.61 (((φ ψ) ¬ ψ) ↔ (φ ¬ ψ))

Proof of Theorem pm5.61
StepHypRef Expression
1 biorf 394 . . 3 ψ → (φ ↔ (ψ φ)))
2 orcom 376 . . 3 ((ψ φ) ↔ (φ ψ))
31, 2syl6rbb 253 . 2 ψ → ((φ ψ) ↔ φ))
43pm5.32ri 619 1 (((φ ψ) ¬ ψ) ↔ (φ ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  pm5.75  903  nnsucelrlem2  4426
  Copyright terms: Public domain W3C validator