| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.61 | GIF version | ||
| Description: Theorem *5.61 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 30-Jun-2013.) |
| Ref | Expression |
|---|---|
| pm5.61 | ⊢ (((φ ∨ ψ) ∧ ¬ ψ) ↔ (φ ∧ ¬ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biorf 394 | . . 3 ⊢ (¬ ψ → (φ ↔ (ψ ∨ φ))) | |
| 2 | orcom 376 | . . 3 ⊢ ((ψ ∨ φ) ↔ (φ ∨ ψ)) | |
| 3 | 1, 2 | syl6rbb 253 | . 2 ⊢ (¬ ψ → ((φ ∨ ψ) ↔ φ)) |
| 4 | 3 | pm5.32ri 619 | 1 ⊢ (((φ ∨ ψ) ∧ ¬ ψ) ↔ (φ ∧ ¬ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: pm5.75 903 nnsucelrlem2 4426 |
| Copyright terms: Public domain | W3C validator |