NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.32rd GIF version

Theorem pm5.32rd 621
Description: Distribution of implication over biconditional (deduction rule). (Contributed by NM, 25-Dec-2004.)
Hypothesis
Ref Expression
pm5.32d.1 (φ → (ψ → (χθ)))
Assertion
Ref Expression
pm5.32rd (φ → ((χ ψ) ↔ (θ ψ)))

Proof of Theorem pm5.32rd
StepHypRef Expression
1 pm5.32d.1 . . 3 (φ → (ψ → (χθ)))
21pm5.32d 620 . 2 (φ → ((ψ χ) ↔ (ψ θ)))
3 ancom 437 . 2 ((χ ψ) ↔ (ψ χ))
4 ancom 437 . 2 ((θ ψ) ↔ (ψ θ))
52, 3, 43bitr4g 279 1 (φ → ((χ ψ) ↔ (θ ψ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  anbi1d  685  pm5.71  902
  Copyright terms: Public domain W3C validator