NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.32da GIF version

Theorem pm5.32da 622
Description: Distribution of implication over biconditional (deduction rule). (Contributed by NM, 9-Dec-2006.)
Hypothesis
Ref Expression
pm5.32da.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
pm5.32da (φ → ((ψ χ) ↔ (ψ θ)))

Proof of Theorem pm5.32da
StepHypRef Expression
1 pm5.32da.1 . . 3 ((φ ψ) → (χθ))
21ex 423 . 2 (φ → (ψ → (χθ)))
32pm5.32d 620 1 (φ → ((ψ χ) ↔ (ψ θ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  rexbida  2630  reubida  2794  rmobida  2799  fcnvres  5244  funbrfv2b  5363  dffn5  5364  fnrnfv  5365  fniniseg  5372  eqfnfv2  5394  funiunfv  5468  dff13  5472  mpteq12f  5656  mpt2eq3dva  5670  ltlenlec  6208
  Copyright terms: Public domain W3C validator