| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.32da | GIF version | ||
| Description: Distribution of implication over biconditional (deduction rule). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 | ⊢ ((φ ∧ ψ) → (χ ↔ θ)) |
| Ref | Expression |
|---|---|
| pm5.32da | ⊢ (φ → ((ψ ∧ χ) ↔ (ψ ∧ θ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 | . . 3 ⊢ ((φ ∧ ψ) → (χ ↔ θ)) | |
| 2 | 1 | ex 423 | . 2 ⊢ (φ → (ψ → (χ ↔ θ))) |
| 3 | 2 | pm5.32d 620 | 1 ⊢ (φ → ((ψ ∧ χ) ↔ (ψ ∧ θ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: rexbida 2630 reubida 2794 rmobida 2799 fcnvres 5244 funbrfv2b 5363 dffn5 5364 fnrnfv 5365 fniniseg 5372 eqfnfv2 5394 funiunfv 5468 dff13 5472 mpteq12f 5656 mpt2eq3dva 5670 ltlenlec 6208 |
| Copyright terms: Public domain | W3C validator |