| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.71 | GIF version | ||
| Description: Theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) |
| Ref | Expression |
|---|---|
| pm5.71 | ⊢ ((ψ → ¬ χ) → (((φ ∨ ψ) ∧ χ) ↔ (φ ∧ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orel2 372 | . . . 4 ⊢ (¬ ψ → ((φ ∨ ψ) → φ)) | |
| 2 | orc 374 | . . . 4 ⊢ (φ → (φ ∨ ψ)) | |
| 3 | 1, 2 | impbid1 194 | . . 3 ⊢ (¬ ψ → ((φ ∨ ψ) ↔ φ)) |
| 4 | 3 | anbi1d 685 | . 2 ⊢ (¬ ψ → (((φ ∨ ψ) ∧ χ) ↔ (φ ∧ χ))) |
| 5 | pm2.21 100 | . . 3 ⊢ (¬ χ → (χ → ((φ ∨ ψ) ↔ φ))) | |
| 6 | 5 | pm5.32rd 621 | . 2 ⊢ (¬ χ → (((φ ∨ ψ) ∧ χ) ↔ (φ ∧ χ))) |
| 7 | 4, 6 | ja 153 | 1 ⊢ ((ψ → ¬ χ) → (((φ ∨ ψ) ∧ χ) ↔ (φ ∧ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |