| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.55 | GIF version | ||
| Description: Theorem *5.55 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 20-Jan-2013.) |
| Ref | Expression |
|---|---|
| pm5.55 | ⊢ (((φ ∨ ψ) ↔ φ) ∨ ((φ ∨ ψ) ↔ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biort 866 | . . . . 5 ⊢ (φ → (φ ↔ (φ ∨ ψ))) | |
| 2 | 1 | bicomd 192 | . . . 4 ⊢ (φ → ((φ ∨ ψ) ↔ φ)) |
| 3 | biorf 394 | . . . . 5 ⊢ (¬ φ → (ψ ↔ (φ ∨ ψ))) | |
| 4 | 3 | bicomd 192 | . . . 4 ⊢ (¬ φ → ((φ ∨ ψ) ↔ ψ)) |
| 5 | 2, 4 | nsyl4 134 | . . 3 ⊢ (¬ ((φ ∨ ψ) ↔ ψ) → ((φ ∨ ψ) ↔ φ)) |
| 6 | 5 | con1i 121 | . 2 ⊢ (¬ ((φ ∨ ψ) ↔ φ) → ((φ ∨ ψ) ↔ ψ)) |
| 7 | 6 | orri 365 | 1 ⊢ (((φ ∨ ψ) ↔ φ) ∨ ((φ ∨ ψ) ↔ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |