| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm5.55 | GIF version | ||
| Description: Theorem *5.55 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 20-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| pm5.55 | ⊢ (((φ ∨ ψ) ↔ φ) ∨ ((φ ∨ ψ) ↔ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biort 866 | . . . . 5 ⊢ (φ → (φ ↔ (φ ∨ ψ))) | |
| 2 | 1 | bicomd 192 | . . . 4 ⊢ (φ → ((φ ∨ ψ) ↔ φ)) | 
| 3 | biorf 394 | . . . . 5 ⊢ (¬ φ → (ψ ↔ (φ ∨ ψ))) | |
| 4 | 3 | bicomd 192 | . . . 4 ⊢ (¬ φ → ((φ ∨ ψ) ↔ ψ)) | 
| 5 | 2, 4 | nsyl4 134 | . . 3 ⊢ (¬ ((φ ∨ ψ) ↔ ψ) → ((φ ∨ ψ) ↔ φ)) | 
| 6 | 5 | con1i 121 | . 2 ⊢ (¬ ((φ ∨ ψ) ↔ φ) → ((φ ∨ ψ) ↔ ψ)) | 
| 7 | 6 | orri 365 | 1 ⊢ (((φ ∨ ψ) ↔ φ) ∨ ((φ ∨ ψ) ↔ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |