New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralcom3 | GIF version |
Description: A commutative law for restricted quantifiers that swaps the domain of the restriction. (Contributed by NM, 22-Feb-2004.) |
Ref | Expression |
---|---|
ralcom3 | ⊢ (∀x ∈ A (x ∈ B → φ) ↔ ∀x ∈ B (x ∈ A → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.04 76 | . . 3 ⊢ ((x ∈ A → (x ∈ B → φ)) → (x ∈ B → (x ∈ A → φ))) | |
2 | 1 | ralimi2 2686 | . 2 ⊢ (∀x ∈ A (x ∈ B → φ) → ∀x ∈ B (x ∈ A → φ)) |
3 | pm2.04 76 | . . 3 ⊢ ((x ∈ B → (x ∈ A → φ)) → (x ∈ A → (x ∈ B → φ))) | |
4 | 3 | ralimi2 2686 | . 2 ⊢ (∀x ∈ B (x ∈ A → φ) → ∀x ∈ A (x ∈ B → φ)) |
5 | 2, 4 | impbii 180 | 1 ⊢ (∀x ∈ A (x ∈ B → φ) ↔ ∀x ∈ B (x ∈ A → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 ∀wral 2614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ral 2619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |