HomeHome New Foundations Explorer
Theorem List (p. 28 of 64)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 2701-2800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremr19.21v 2701* Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(x A (φψ) ↔ (φx A ψ))
 
Theoremralrimd 2702 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.)
xφ    &   xψ    &   (φ → (ψ → (x Aχ)))       (φ → (ψx A χ))
 
Theoremralrimdv 2703* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.)
(φ → (ψ → (x Aχ)))       (φ → (ψx A χ))
 
Theoremralrimdva 2704* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.)
((φ x A) → (ψχ))       (φ → (ψx A χ))
 
Theoremralrimivv 2705* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
(φ → ((x A y B) → ψ))       (φx A y B ψ)
 
Theoremralrimivva 2706* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.)
((φ (x A y B)) → ψ)       (φx A y B ψ)
 
Theoremralrimivvva 2707* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.)
((φ (x A y B z C)) → ψ)       (φx A y B z C ψ)
 
Theoremralrimdvv 2708* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
(φ → (ψ → ((x A y B) → χ)))       (φ → (ψx A y B χ))
 
Theoremralrimdvva 2709* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
((φ (x A y B)) → (ψχ))       (φ → (ψx A y B χ))
 
Theoremrgen2 2710* Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
((x A y B) → φ)       x A y B φ
 
Theoremrgen3 2711* Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
((x A y B z C) → φ)       x A y B z C φ
 
Theoremr19.21bi 2712 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
(φx A ψ)       ((φ x A) → ψ)
 
Theoremrspec2 2713 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
x A y B φ       ((x A y B) → φ)
 
Theoremrspec3 2714 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
x A y B z C φ       ((x A y B z C) → φ)
 
Theoremr19.21be 2715 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.)
(φx A ψ)       x A (φψ)
 
Theoremnrex 2716 Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
(x A → ¬ ψ)        ¬ x A ψ
 
Theoremnrexdv 2717* Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
((φ x A) → ¬ ψ)       (φ → ¬ x A ψ)
 
Theoremrexim 2718 Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(x A (φψ) → (x A φx A ψ))
 
Theoremreximia 2719 Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.)
(x A → (φψ))       (x A φx A ψ)
 
Theoremreximi2 2720 Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
((x A φ) → (x B ψ))       (x A φx B ψ)
 
Theoremreximi 2721 Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.)
(φψ)       (x A φx A ψ)
 
Theoremreximdai 2722 Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
xφ    &   (φ → (x A → (ψχ)))       (φ → (x A ψx A χ))
 
Theoremreximdv2 2723* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.)
(φ → ((x A ψ) → (x B χ)))       (φ → (x A ψx B χ))
 
Theoremreximdvai 2724* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.)
(φ → (x A → (ψχ)))       (φ → (x A ψx A χ))
 
Theoremreximdv 2725* Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.)
(φ → (ψχ))       (φ → (x A ψx A χ))
 
Theoremreximdva 2726* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
((φ x A) → (ψχ))       (φ → (x A ψx A χ))
 
Theoremr19.12 2727* Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(x A y B φy B x A φ)
 
Theoremr19.23t 2728 Closed theorem form of r19.23 2729. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
(Ⅎxψ → (x A (φψ) ↔ (x A φψ)))
 
Theoremr19.23 2729 Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.)
xψ       (x A (φψ) ↔ (x A φψ))
 
Theoremr19.23v 2730* Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
(x A (φψ) ↔ (x A φψ))
 
Theoremrexlimi 2731 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
xψ    &   (x A → (φψ))       (x A φψ)
 
Theoremrexlimiv 2732* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
(x A → (φψ))       (x A φψ)
 
Theoremrexlimiva 2733* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.)
((x A φ) → ψ)       (x A φψ)
 
Theoremrexlimivw 2734* Weaker version of rexlimiv 2732. (Contributed by FL, 19-Sep-2011.)
(φψ)       (x A φψ)
 
Theoremrexlimd 2735 Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
xφ    &   xχ    &   (φ → (x A → (ψχ)))       (φ → (x A ψχ))
 
Theoremrexlimd2 2736 Version of rexlimd 2735 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
xφ    &   (φ → Ⅎxχ)    &   (φ → (x A → (ψχ)))       (φ → (x A ψχ))
 
Theoremrexlimdv 2737* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
(φ → (x A → (ψχ)))       (φ → (x A ψχ))
 
Theoremrexlimdva 2738* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007.)
((φ x A) → (ψχ))       (φ → (x A ψχ))
 
Theoremrexlimdvaa 2739* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
((φ (x A ψ)) → χ)       (φ → (x A ψχ))
 
Theoremrexlimdv3a 2740* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). Frequently-used variant of rexlimdv 2737. (Contributed by NM, 7-Jun-2015.)
((φ x A ψ) → χ)       (φ → (x A ψχ))
 
Theoremrexlimdvw 2741* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.)
(φ → (ψχ))       (φ → (x A ψχ))
 
Theoremrexlimddv 2742* Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.)
(φx A ψ)    &   ((φ (x A ψ)) → χ)       (φχ)
 
Theoremrexlimivv 2743* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.)
((x A y B) → (φψ))       (x A y B φψ)
 
Theoremrexlimdvv 2744* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.)
(φ → ((x A y B) → (ψχ)))       (φ → (x A y B ψχ))
 
Theoremrexlimdvva 2745* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.)
((φ (x A y B)) → (ψχ))       (φ → (x A y B ψχ))
 
Theoremr19.26 2746 Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(x A (φ ψ) ↔ (x A φ x A ψ))
 
Theoremr19.26-2 2747 Theorem 19.26 of [Margaris] p. 90 with 2 restricted quantifiers. (Contributed by NM, 10-Aug-2004.)
(x A y B (φ ψ) ↔ (x A y B φ x A y B ψ))
 
Theoremr19.26-3 2748 Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.)
(x A (φ ψ χ) ↔ (x A φ x A ψ x A χ))
 
Theoremr19.26m 2749 Theorem 19.26 of [Margaris] p. 90 with mixed quantifiers. (Contributed by NM, 22-Feb-2004.)
(x((x Aφ) (x Bψ)) ↔ (x A φ x B ψ))
 
Theoremralbi 2750 Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.)
(x A (φψ) → (x A φx A ψ))
 
Theoremralbiim 2751 Split a biconditional and distribute quantifier. (Contributed by NM, 3-Jun-2012.)
(x A (φψ) ↔ (x A (φψ) x A (ψφ)))
 
Theoremr19.27av 2752* Restricted version of one direction of Theorem 19.27 of [Margaris] p. 90. (The other direction doesn't hold when A is empty.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.)
((x A φ ψ) → x A (φ ψ))
 
Theoremr19.28av 2753* Restricted version of one direction of Theorem 19.28 of [Margaris] p. 90. (The other direction doesn't hold when A is empty.) (Contributed by NM, 2-Apr-2004.)
((φ x A ψ) → x A (φ ψ))
 
Theoremr19.29 2754 Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.)
((x A φ x A ψ) → x A (φ ψ))
 
Theoremr19.29r 2755 Variation of Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
((x A φ x A ψ) → x A (φ ψ))
 
Theoremr19.30 2756 Theorem 19.30 of [Margaris] p. 90 with restricted quantifiers. (Contributed by Scott Fenton, 25-Feb-2011.)
(x A (φ ψ) → (x A φ x A ψ))
 
Theoremr19.32v 2757* Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 25-Nov-2003.)
(x A (φ ψ) ↔ (φ x A ψ))
 
Theoremr19.35 2758 Restricted quantifier version of Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 20-Sep-2003.)
(x A (φψ) ↔ (x A φx A ψ))
 
Theoremr19.36av 2759* One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. The other direction doesn't hold when A is empty. (Contributed by NM, 22-Oct-2003.)
(x A (φψ) → (x A φψ))
 
Theoremr19.37 2760 Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. (The other direction doesn't hold when A is empty.) (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.)
xφ       (x A (φψ) → (φx A ψ))
 
Theoremr19.37av 2761* Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. (The other direction doesn't hold when A is empty.) (Contributed by NM, 2-Apr-2004.)
(x A (φψ) → (φx A ψ))
 
Theoremr19.40 2762 Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
(x A (φ ψ) → (x A φ x A ψ))
 
Theoremr19.41 2763 Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 1-Nov-2010.)
xψ       (x A (φ ψ) ↔ (x A φ ψ))
 
Theoremr19.41v 2764* Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 17-Dec-2003.)
(x A (φ ψ) ↔ (x A φ ψ))
 
Theoremr19.42v 2765* Restricted version of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
(x A (φ ψ) ↔ (φ x A ψ))
 
Theoremr19.43 2766 Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(x A (φ ψ) ↔ (x A φ x A ψ))
 
Theoremr19.44av 2767* One direction of a restricted quantifier version of Theorem 19.44 of [Margaris] p. 90. The other direction doesn't hold when A is empty. (Contributed by NM, 2-Apr-2004.)
(x A (φ ψ) → (x A φ ψ))
 
Theoremr19.45av 2768* Restricted version of one direction of Theorem 19.45 of [Margaris] p. 90. (The other direction doesn't hold when A is empty.) (Contributed by NM, 2-Apr-2004.)
(x A (φ ψ) → (φ x A ψ))
 
Theoremralcomf 2769* Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
yA    &   xB       (x A y B φy B x A φ)
 
Theoremrexcomf 2770* Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
yA    &   xB       (x A y B φy B x A φ)
 
Theoremralcom 2771* Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
(x A y B φy B x A φ)
 
Theoremrexcom 2772* Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
(x A y B φy B x A φ)
 
Theoremrexcom13 2773* Swap 1st and 3rd restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
(x A y B z C φz C y B x A φ)
 
Theoremrexrot4 2774* Rotate existential restricted quantifiers twice. (Contributed by NM, 8-Apr-2015.)
(x A y B z C w D φz C w D x A y B φ)
 
Theoremralcom2 2775* Commutation of restricted quantifiers. Note that x and y needn't be distinct (this makes the proof longer). (Contributed by NM, 24-Nov-1994.) (Proof shortened by Mario Carneiro, 17-Oct-2016.)
(x A y A φy A x A φ)
 
Theoremralcom3 2776 A commutative law for restricted quantifiers that swaps the domain of the restriction. (Contributed by NM, 22-Feb-2004.)
(x A (x Bφ) ↔ x B (x Aφ))
 
Theoremreean 2777* Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.)
yφ    &   xψ       (x A y B (φ ψ) ↔ (x A φ y B ψ))
 
Theoremreeanv 2778* Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.)
(x A y B (φ ψ) ↔ (x A φ y B ψ))
 
Theorem3reeanv 2779* Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
(x A y B z C (φ ψ χ) ↔ (x A φ y B ψ z C χ))
 
Theorem2ralor 2780* Distribute quantification over "or". (Contributed by Jeff Madsen, 19-Jun-2010.)
(x A y B (φ ψ) ↔ (x A φ y B ψ))
 
Theoremnfreu1 2781 x is not free in ∃!x Aφ. (Contributed by NM, 19-Mar-1997.)
x∃!x A φ
 
Theoremnfrmo1 2782 x is not free in ∃*x Aφ. (Contributed by NM, 16-Jun-2017.)
x∃*x A φ
 
Theoremnfreud 2783 Deduction version of nfreu 2785. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
yφ    &   (φxA)    &   (φ → Ⅎxψ)       (φ → Ⅎx∃!y A ψ)
 
Theoremnfrmod 2784 Deduction version of nfrmo 2786. (Contributed by NM, 17-Jun-2017.)
yφ    &   (φxA)    &   (φ → Ⅎxψ)       (φ → Ⅎx∃*y A ψ)
 
Theoremnfreu 2785 Bound-variable hypothesis builder for restricted uniqueness. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.)
xA    &   xφ       x∃!y A φ
 
Theoremnfrmo 2786 Bound-variable hypothesis builder for restricted uniqueness. (Contributed by NM, 16-Jun-2017.)
xA    &   xφ       x∃*y A φ
 
Theoremrabid 2787 An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.)
(x {x A φ} ↔ (x A φ))
 
Theoremrabid2 2788* An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(A = {x A φ} ↔ x A φ)
 
Theoremrabbi 2789 Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2850. (Contributed by NM, 25-Nov-2013.)
(x A (ψχ) ↔ {x A ψ} = {x A χ})
 
Theoremrabswap 2790 Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
{x A x B} = {x B x A}
 
Theoremnfrab1 2791 The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
x{x A φ}
 
Theoremnfrab 2792 A variable not free in a wff remains so in a restricted class abstraction. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.)
xφ    &   xA       x{y A φ}
 
Theoremreubida 2793 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by Mario Carneiro, 19-Nov-2016.)
xφ    &   ((φ x A) → (ψχ))       (φ → (∃!x A ψ∃!x A χ))
 
Theoremreubidva 2794* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 13-Nov-2004.)
((φ x A) → (ψχ))       (φ → (∃!x A ψ∃!x A χ))
 
Theoremreubidv 2795* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 17-Oct-1996.)
(φ → (ψχ))       (φ → (∃!x A ψ∃!x A χ))
 
Theoremreubiia 2796 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 14-Nov-2004.)
(x A → (φψ))       (∃!x A φ∃!x A ψ)
 
Theoremreubii 2797 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 22-Oct-1999.)
(φψ)       (∃!x A φ∃!x A ψ)
 
Theoremrmobida 2798 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
xφ    &   ((φ x A) → (ψχ))       (φ → (∃*x A ψ∃*x A χ))
 
Theoremrmobidva 2799* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
((φ x A) → (ψχ))       (φ → (∃*x A ψ∃*x A χ))
 
Theoremrmobidv 2800* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
(φ → (ψχ))       (φ → (∃*x A ψ∃*x A χ))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6338
  Copyright terms: Public domain < Previous  Next >