NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reean GIF version

Theorem reean 2778
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
reean.1 yφ
reean.2 xψ
Assertion
Ref Expression
reean (x A y B (φ ψ) ↔ (x A φ y B ψ))
Distinct variable groups:   y,A   x,B   x,y
Allowed substitution hints:   φ(x,y)   ψ(x,y)   A(x)   B(y)

Proof of Theorem reean
StepHypRef Expression
1 an4 797 . . . 4 (((x A y B) (φ ψ)) ↔ ((x A φ) (y B ψ)))
212exbii 1583 . . 3 (xy((x A y B) (φ ψ)) ↔ xy((x A φ) (y B ψ)))
3 nfv 1619 . . . . 5 y x A
4 reean.1 . . . . 5 yφ
53, 4nfan 1824 . . . 4 y(x A φ)
6 nfv 1619 . . . . 5 x y B
7 reean.2 . . . . 5 xψ
86, 7nfan 1824 . . . 4 x(y B ψ)
95, 8eean 1912 . . 3 (xy((x A φ) (y B ψ)) ↔ (x(x A φ) y(y B ψ)))
102, 9bitri 240 . 2 (xy((x A y B) (φ ψ)) ↔ (x(x A φ) y(y B ψ)))
11 r2ex 2653 . 2 (x A y B (φ ψ) ↔ xy((x A y B) (φ ψ)))
12 df-rex 2621 . . 3 (x A φx(x A φ))
13 df-rex 2621 . . 3 (y B ψy(y B ψ))
1412, 13anbi12i 678 . 2 ((x A φ y B ψ) ↔ (x(x A φ) y(y B ψ)))
1510, 11, 143bitr4i 268 1 (x A y B (φ ψ) ↔ (x A φ y B ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541  wnf 1544   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621
This theorem is referenced by:  reeanv  2779
  Copyright terms: Public domain W3C validator