New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reean | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
reean.1 | ⊢ Ⅎyφ |
reean.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
reean | ⊢ (∃x ∈ A ∃y ∈ B (φ ∧ ψ) ↔ (∃x ∈ A φ ∧ ∃y ∈ B ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 797 | . . . 4 ⊢ (((x ∈ A ∧ y ∈ B) ∧ (φ ∧ ψ)) ↔ ((x ∈ A ∧ φ) ∧ (y ∈ B ∧ ψ))) | |
2 | 1 | 2exbii 1583 | . . 3 ⊢ (∃x∃y((x ∈ A ∧ y ∈ B) ∧ (φ ∧ ψ)) ↔ ∃x∃y((x ∈ A ∧ φ) ∧ (y ∈ B ∧ ψ))) |
3 | nfv 1619 | . . . . 5 ⊢ Ⅎy x ∈ A | |
4 | reean.1 | . . . . 5 ⊢ Ⅎyφ | |
5 | 3, 4 | nfan 1824 | . . . 4 ⊢ Ⅎy(x ∈ A ∧ φ) |
6 | nfv 1619 | . . . . 5 ⊢ Ⅎx y ∈ B | |
7 | reean.2 | . . . . 5 ⊢ Ⅎxψ | |
8 | 6, 7 | nfan 1824 | . . . 4 ⊢ Ⅎx(y ∈ B ∧ ψ) |
9 | 5, 8 | eean 1912 | . . 3 ⊢ (∃x∃y((x ∈ A ∧ φ) ∧ (y ∈ B ∧ ψ)) ↔ (∃x(x ∈ A ∧ φ) ∧ ∃y(y ∈ B ∧ ψ))) |
10 | 2, 9 | bitri 240 | . 2 ⊢ (∃x∃y((x ∈ A ∧ y ∈ B) ∧ (φ ∧ ψ)) ↔ (∃x(x ∈ A ∧ φ) ∧ ∃y(y ∈ B ∧ ψ))) |
11 | r2ex 2653 | . 2 ⊢ (∃x ∈ A ∃y ∈ B (φ ∧ ψ) ↔ ∃x∃y((x ∈ A ∧ y ∈ B) ∧ (φ ∧ ψ))) | |
12 | df-rex 2621 | . . 3 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
13 | df-rex 2621 | . . 3 ⊢ (∃y ∈ B ψ ↔ ∃y(y ∈ B ∧ ψ)) | |
14 | 12, 13 | anbi12i 678 | . 2 ⊢ ((∃x ∈ A φ ∧ ∃y ∈ B ψ) ↔ (∃x(x ∈ A ∧ φ) ∧ ∃y(y ∈ B ∧ ψ))) |
15 | 10, 11, 14 | 3bitr4i 268 | 1 ⊢ (∃x ∈ A ∃y ∈ B (φ ∧ ψ) ↔ (∃x ∈ A φ ∧ ∃y ∈ B ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 |
This theorem is referenced by: reeanv 2779 |
Copyright terms: Public domain | W3C validator |