| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ralimdv2 | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| ralimdv2.1 | ⊢ (φ → ((x ∈ A → ψ) → (x ∈ B → χ))) |
| Ref | Expression |
|---|---|
| ralimdv2 | ⊢ (φ → (∀x ∈ A ψ → ∀x ∈ B χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv2.1 | . . 3 ⊢ (φ → ((x ∈ A → ψ) → (x ∈ B → χ))) | |
| 2 | 1 | alimdv 1621 | . 2 ⊢ (φ → (∀x(x ∈ A → ψ) → ∀x(x ∈ B → χ))) |
| 3 | df-ral 2620 | . 2 ⊢ (∀x ∈ A ψ ↔ ∀x(x ∈ A → ψ)) | |
| 4 | df-ral 2620 | . 2 ⊢ (∀x ∈ B χ ↔ ∀x(x ∈ B → χ)) | |
| 5 | 2, 3, 4 | 3imtr4g 261 | 1 ⊢ (φ → (∀x ∈ A ψ → ∀x ∈ B χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
| This theorem depends on definitions: df-bi 177 df-ral 2620 |
| This theorem is referenced by: ssralv 3331 |
| Copyright terms: Public domain | W3C validator |