NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralimdv2 GIF version

Theorem ralimdv2 2695
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.)
Hypothesis
Ref Expression
ralimdv2.1 (φ → ((x Aψ) → (x Bχ)))
Assertion
Ref Expression
ralimdv2 (φ → (x A ψx B χ))
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   χ(x)   A(x)   B(x)

Proof of Theorem ralimdv2
StepHypRef Expression
1 ralimdv2.1 . . 3 (φ → ((x Aψ) → (x Bχ)))
21alimdv 1621 . 2 (φ → (x(x Aψ) → x(x Bχ)))
3 df-ral 2620 . 2 (x A ψx(x Aψ))
4 df-ral 2620 . 2 (x B χx(x Bχ))
52, 3, 43imtr4g 261 1 (φ → (x A ψx B χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616
This theorem depends on definitions:  df-bi 177  df-ral 2620
This theorem is referenced by:  ssralv  3331
  Copyright terms: Public domain W3C validator