New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralimdv2 | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
ralimdv2.1 | ⊢ (φ → ((x ∈ A → ψ) → (x ∈ B → χ))) |
Ref | Expression |
---|---|
ralimdv2 | ⊢ (φ → (∀x ∈ A ψ → ∀x ∈ B χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv2.1 | . . 3 ⊢ (φ → ((x ∈ A → ψ) → (x ∈ B → χ))) | |
2 | 1 | alimdv 1621 | . 2 ⊢ (φ → (∀x(x ∈ A → ψ) → ∀x(x ∈ B → χ))) |
3 | df-ral 2620 | . 2 ⊢ (∀x ∈ A ψ ↔ ∀x(x ∈ A → ψ)) | |
4 | df-ral 2620 | . 2 ⊢ (∀x ∈ B χ ↔ ∀x(x ∈ B → χ)) | |
5 | 2, 3, 4 | 3imtr4g 261 | 1 ⊢ (φ → (∀x ∈ A ψ → ∀x ∈ B χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-ral 2620 |
This theorem is referenced by: ssralv 3331 |
Copyright terms: Public domain | W3C validator |