| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ralrimi | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| ralrimi.1 | ⊢ Ⅎxφ | 
| ralrimi.2 | ⊢ (φ → (x ∈ A → ψ)) | 
| Ref | Expression | 
|---|---|
| ralrimi | ⊢ (φ → ∀x ∈ A ψ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralrimi.1 | . . 3 ⊢ Ⅎxφ | |
| 2 | ralrimi.2 | . . 3 ⊢ (φ → (x ∈ A → ψ)) | |
| 3 | 1, 2 | alrimi 1765 | . 2 ⊢ (φ → ∀x(x ∈ A → ψ)) | 
| 4 | df-ral 2620 | . 2 ⊢ (∀x ∈ A ψ ↔ ∀x(x ∈ A → ψ)) | |
| 5 | 3, 4 | sylibr 203 | 1 ⊢ (φ → ∀x ∈ A ψ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2615 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 | 
| This theorem is referenced by: ralrimiv 2697 reximdai 2723 r19.12 2728 rexlimd 2736 rexlimd2 2737 r19.37 2761 ralcom2 2776 2rmorex 3041 iineq2d 3990 ncfinraise 4482 mpteq2da 5667 | 
| Copyright terms: Public domain | W3C validator |