NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralrimi GIF version

Theorem ralrimi 2696
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
Hypotheses
Ref Expression
ralrimi.1 xφ
ralrimi.2 (φ → (x Aψ))
Assertion
Ref Expression
ralrimi (φx A ψ)

Proof of Theorem ralrimi
StepHypRef Expression
1 ralrimi.1 . . 3 xφ
2 ralrimi.2 . . 3 (φ → (x Aψ))
31, 2alrimi 1765 . 2 (φx(x Aψ))
4 df-ral 2620 . 2 (x A ψx(x Aψ))
53, 4sylibr 203 1 (φx A ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wnf 1544   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by:  ralrimiv  2697  reximdai  2723  r19.12  2728  rexlimd  2736  rexlimd2  2737  r19.37  2761  ralcom2  2776  2rmorex  3041  iineq2d  3990  ncfinraise  4482  mpteq2da  5667
  Copyright terms: Public domain W3C validator