| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ralimiaa | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| ralimiaa.1 | ⊢ ((x ∈ A ∧ φ) → ψ) |
| Ref | Expression |
|---|---|
| ralimiaa | ⊢ (∀x ∈ A φ → ∀x ∈ A ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimiaa.1 | . . 3 ⊢ ((x ∈ A ∧ φ) → ψ) | |
| 2 | 1 | ex 423 | . 2 ⊢ (x ∈ A → (φ → ψ)) |
| 3 | 2 | ralimia 2688 | 1 ⊢ (∀x ∈ A φ → ∀x ∈ A ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ral 2620 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |