New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralimi | GIF version |
Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralimi.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
ralimi | ⊢ (∀x ∈ A φ → ∀x ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | a1i 10 | . 2 ⊢ (x ∈ A → (φ → ψ)) |
3 | 2 | ralimia 2688 | 1 ⊢ (∀x ∈ A φ → ∀x ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ral 2620 |
This theorem is referenced by: ral2imi 2691 r19.26 2747 r19.29 2755 rr19.3v 2981 rr19.28v 2982 reu3 3027 uniiunlem 3354 reupick2 3542 uniss2 3923 ss2iun 3985 iineq2 3987 iunss2 4012 fununi 5161 fun11uni 5163 dff3 5421 dffo5 5425 ffvresb 5432 dmmptg 5685 fnmpt 5690 fnmpt2 5733 |
Copyright terms: Public domain | W3C validator |