![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > ralimia | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (x ∈ A → (φ → ψ)) |
Ref | Expression |
---|---|
ralimia | ⊢ (∀x ∈ A φ → ∀x ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (x ∈ A → (φ → ψ)) | |
2 | 1 | a2i 12 | . 2 ⊢ ((x ∈ A → φ) → (x ∈ A → ψ)) |
3 | 2 | ralimi2 2686 | 1 ⊢ (∀x ∈ A φ → ∀x ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2614 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ral 2619 |
This theorem is referenced by: ralimiaa 2688 ralimi 2689 r19.12 2727 rr19.3v 2980 rr19.28v 2981 ffvresb 5431 |
Copyright terms: Public domain | W3C validator |