NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralimia GIF version

Theorem ralimia 2688
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
Hypothesis
Ref Expression
ralimia.1 (x A → (φψ))
Assertion
Ref Expression
ralimia (x A φx A ψ)

Proof of Theorem ralimia
StepHypRef Expression
1 ralimia.1 . . 3 (x A → (φψ))
21a2i 12 . 2 ((x Aφ) → (x Aψ))
32ralimi2 2687 1 (x A φx A ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-ral 2620
This theorem is referenced by:  ralimiaa  2689  ralimi  2690  r19.12  2728  rr19.3v  2981  rr19.28v  2982  ffvresb  5432
  Copyright terms: Public domain W3C validator