NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rbaibd GIF version

Theorem rbaibd 876
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1 (φ → (ψ ↔ (χ θ)))
Assertion
Ref Expression
rbaibd ((φ θ) → (ψχ))

Proof of Theorem rbaibd
StepHypRef Expression
1 baibd.1 . 2 (φ → (ψ ↔ (χ θ)))
2 iba 489 . . 3 (θ → (χ ↔ (χ θ)))
32bicomd 192 . 2 (θ → ((χ θ) ↔ χ))
41, 3sylan9bb 680 1 ((φ θ) → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator