New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylan9bb | GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (φ → (ψ ↔ χ)) |
sylan9bb.2 | ⊢ (θ → (χ ↔ τ)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((φ ∧ θ) → (ψ ↔ τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | adantr 451 | . 2 ⊢ ((φ ∧ θ) → (ψ ↔ χ)) |
3 | sylan9bb.2 | . . 3 ⊢ (θ → (χ ↔ τ)) | |
4 | 3 | adantl 452 | . 2 ⊢ ((φ ∧ θ) → (χ ↔ τ)) |
5 | 2, 4 | bitrd 244 | 1 ⊢ ((φ ∧ θ) → (ψ ↔ τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylan9bbr 681 bi2anan9 843 baibd 875 rbaibd 876 syl3an9b 1250 nanbi12 1297 sbcom 2089 sbcom2 2114 ax11eq 2193 ax11el 2194 eqeq12 2365 eleq12 2415 sbhypf 2905 ceqsrex2v 2975 sseq12 3295 rexprg 3777 rextpg 3779 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 sfintfin 4533 breq12 4645 opelopabg 4706 brabg 4707 opelopab2 4708 ralxpf 4828 feq23 5214 f00 5250 fconstg 5252 f1oeq23 5285 f1o00 5318 f1oiso 5500 caovord 5630 caovord3 5632 cbvmpt2x 5679 ovmpt2x 5713 composefn 5819 fnfullfun 5859 elce 6176 ce2 6193 |
Copyright terms: Public domain | W3C validator |