NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpsyl GIF version

Theorem mpsyl 59
Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.)
Hypotheses
Ref Expression
mpsyl.1 φ
mpsyl.2 (ψχ)
mpsyl.3 (φ → (χθ))
Assertion
Ref Expression
mpsyl (ψθ)

Proof of Theorem mpsyl
StepHypRef Expression
1 mpsyl.1 . . 3 φ
21a1i 10 . 2 (ψφ)
3 mpsyl.2 . 2 (ψχ)
4 mpsyl.3 . 2 (φ → (χθ))
52, 3, 4sylc 56 1 (ψθ)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  tbwlem1  1470  tbwlem2  1471  re1luk3  1477  merco1lem17  1498  re1tbw1  1510  a16g  1945  funmo  5125  foimacnv  5303  isoini2  5498
  Copyright terms: Public domain W3C validator