| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpsyl | GIF version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 | ⊢ φ |
| mpsyl.2 | ⊢ (ψ → χ) |
| mpsyl.3 | ⊢ (φ → (χ → θ)) |
| Ref | Expression |
|---|---|
| mpsyl | ⊢ (ψ → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 | . . 3 ⊢ φ | |
| 2 | 1 | a1i 10 | . 2 ⊢ (ψ → φ) |
| 3 | mpsyl.2 | . 2 ⊢ (ψ → χ) | |
| 4 | mpsyl.3 | . 2 ⊢ (φ → (χ → θ)) | |
| 5 | 2, 3, 4 | sylc 56 | 1 ⊢ (ψ → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: tbwlem1 1470 tbwlem2 1471 re1luk3 1477 merco1lem17 1498 re1tbw1 1510 a16g 1945 funmo 5126 foimacnv 5304 isoini2 5499 |
| Copyright terms: Public domain | W3C validator |