| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simp11l | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp11l | ⊢ ((((φ ∧ ψ) ∧ χ ∧ θ) ∧ τ ∧ η) → φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 979 | . 2 ⊢ (((φ ∧ ψ) ∧ χ ∧ θ) → φ) | |
| 2 | 1 | 3ad2ant1 976 | 1 ⊢ ((((φ ∧ ψ) ∧ χ ∧ θ) ∧ τ ∧ η) → φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |