| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simp1l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp1l | ⊢ (((φ ∧ ψ) ∧ χ ∧ θ) → φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 443 | . 2 ⊢ ((φ ∧ ψ) → φ) | |
| 2 | 1 | 3ad2ant1 976 | 1 ⊢ (((φ ∧ ψ) ∧ χ ∧ θ) → φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: simpl1l 1006 simpr1l 1012 simp11l 1066 simp21l 1072 simp31l 1078 ncfindi 4476 tfinpw1 4495 tfinltfinlem1 4501 nnpweq 4524 sfintfin 4533 sfinltfin 4536 |
| Copyright terms: Public domain | W3C validator |