New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simp23 | GIF version |
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
simp23 | ⊢ ((φ ∧ (ψ ∧ χ ∧ θ) ∧ τ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 957 | . 2 ⊢ ((ψ ∧ χ ∧ θ) → θ) | |
2 | 1 | 3ad2ant2 977 | 1 ⊢ ((φ ∧ (ψ ∧ χ ∧ θ) ∧ τ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simpl23 1035 simpr23 1044 simp123 1089 simp223 1098 simp323 1107 sfinltfin 4535 |
Copyright terms: Public domain | W3C validator |