New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simp3 | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
simp3 | ⊢ ((φ ∧ ψ ∧ χ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 954 | . 2 ⊢ ((φ ∧ ψ ∧ χ) → (ψ ∧ χ)) | |
2 | 1 | simprd 449 | 1 ⊢ ((φ ∧ ψ ∧ χ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simpl3 960 simpr3 963 simp3i 966 simp3d 969 simp13 987 simp23 990 simp33 993 3anibar 1123 mob2 3016 opkthg 4131 ncfindi 4475 tfindi 4496 nnadjoinpw 4521 sfintfin 4532 tfinnn 4534 vfintle 4546 peano4 4557 fvopab4t 5385 f1oiso2 5500 ov2ag 5598 xpassen 6057 nenpw1pwlem2 6085 ceclnn1 6189 nclenc 6222 lenc 6223 taddc 6229 addcdir 6251 spaccl 6286 |
Copyright terms: Public domain | W3C validator |