New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simp3 | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
simp3 | ⊢ ((φ ∧ ψ ∧ χ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 954 | . 2 ⊢ ((φ ∧ ψ ∧ χ) → (ψ ∧ χ)) | |
2 | 1 | simprd 449 | 1 ⊢ ((φ ∧ ψ ∧ χ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simpl3 960 simpr3 963 simp3i 966 simp3d 969 simp13 987 simp23 990 simp33 993 3anibar 1123 mob2 3017 opkthg 4132 ncfindi 4476 tfindi 4497 nnadjoinpw 4522 sfintfin 4533 tfinnn 4535 vfintle 4547 peano4 4558 fvopab4t 5386 f1oiso2 5501 ov2ag 5599 xpassen 6058 nenpw1pwlem2 6086 ceclnn1 6190 nclenc 6223 lenc 6224 taddc 6230 addcdir 6252 spaccl 6287 |
Copyright terms: Public domain | W3C validator |