NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simpr1 GIF version

Theorem simpr1 961
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
Assertion
Ref Expression
simpr1 ((φ (ψ χ θ)) → ψ)

Proof of Theorem simpr1
StepHypRef Expression
1 simp1 955 . 2 ((ψ χ θ) → ψ)
21adantl 452 1 ((φ (ψ χ θ)) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  simplr1  997  simprr1  1003  simp1r1  1051  simp2r1  1057  simp3r1  1063  3anandis  1283  sfinltfin  4536  enadj  6061
  Copyright terms: Public domain W3C validator