| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simpr1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr1 | ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 955 | . 2 ⊢ ((ψ ∧ χ ∧ θ) → ψ) | |
| 2 | 1 | adantl 452 | 1 ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: simplr1 997 simprr1 1003 simp1r1 1051 simp2r1 1057 simp3r1 1063 3anandis 1283 sfinltfin 4536 enadj 6061 |
| Copyright terms: Public domain | W3C validator |