NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simpr2 GIF version

Theorem simpr2 962
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
Assertion
Ref Expression
simpr2 ((φ (ψ χ θ)) → χ)

Proof of Theorem simpr2
StepHypRef Expression
1 simp2 956 . 2 ((ψ χ θ) → χ)
21adantl 452 1 ((φ (ψ χ θ)) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  simplr2  998  simprr2  1004  simp1r2  1052  simp2r2  1058  simp3r2  1064  3anandis  1283
  Copyright terms: Public domain W3C validator