| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simpr2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 | ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 956 | . 2 ⊢ ((ψ ∧ χ ∧ θ) → χ) | |
| 2 | 1 | adantl 452 | 1 ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: simplr2 998 simprr2 1004 simp1r2 1052 simp2r2 1058 simp3r2 1064 3anandis 1283 |
| Copyright terms: Public domain | W3C validator |