Proof of Theorem enadj
Step | Hyp | Ref
| Expression |
1 | | sneq 3745 |
. . . . . 6
⊢ (X = Y →
{X} = {Y}) |
2 | 1 | uneq2d 3419 |
. . . . 5
⊢ (X = Y →
(A ∪ {X}) = (A ∪
{Y})) |
3 | 2 | eqeq1d 2361 |
. . . 4
⊢ (X = Y →
((A ∪ {X}) = (B ∪
{Y}) ↔ (A ∪ {Y}) =
(B ∪ {Y}))) |
4 | | eleq1 2413 |
. . . . 5
⊢ (X = Y →
(X ∈
A ↔ Y ∈ A)) |
5 | 4 | notbid 285 |
. . . 4
⊢ (X = Y →
(¬ X ∈ A ↔
¬ Y ∈
A)) |
6 | 3, 5 | 3anbi12d 1253 |
. . 3
⊢ (X = Y →
(((A ∪ {X}) = (B ∪
{Y}) ∧
¬ X ∈
A ∧ ¬
Y ∈
B) ↔ ((A ∪ {Y}) =
(B ∪ {Y}) ∧ ¬
Y ∈
A ∧ ¬
Y ∈
B))) |
7 | | simp1 955 |
. . . . . 6
⊢ (((A ∪ {Y}) =
(B ∪ {Y}) ∧ ¬
Y ∈
A ∧ ¬
Y ∈
B) → (A ∪ {Y}) =
(B ∪ {Y})) |
8 | 7 | difeq1d 3385 |
. . . . 5
⊢ (((A ∪ {Y}) =
(B ∪ {Y}) ∧ ¬
Y ∈
A ∧ ¬
Y ∈
B) → ((A ∪ {Y})
∖ {Y}) =
((B ∪ {Y}) ∖ {Y})) |
9 | | nnsucelrlem2 4426 |
. . . . . 6
⊢ (¬ Y ∈ A → ((A
∪ {Y}) ∖ {Y}) =
A) |
10 | 9 | 3ad2ant2 977 |
. . . . 5
⊢ (((A ∪ {Y}) =
(B ∪ {Y}) ∧ ¬
Y ∈
A ∧ ¬
Y ∈
B) → ((A ∪ {Y})
∖ {Y}) =
A) |
11 | | nnsucelrlem2 4426 |
. . . . . 6
⊢ (¬ Y ∈ B → ((B
∪ {Y}) ∖ {Y}) =
B) |
12 | 11 | 3ad2ant3 978 |
. . . . 5
⊢ (((A ∪ {Y}) =
(B ∪ {Y}) ∧ ¬
Y ∈
A ∧ ¬
Y ∈
B) → ((B ∪ {Y})
∖ {Y}) =
B) |
13 | 8, 10, 12 | 3eqtr3d 2393 |
. . . 4
⊢ (((A ∪ {Y}) =
(B ∪ {Y}) ∧ ¬
Y ∈
A ∧ ¬
Y ∈
B) → A = B) |
14 | | enadj.2 |
. . . . 5
⊢ B ∈
V |
15 | 14 | enrflx 6036 |
. . . 4
⊢ B ≈ B |
16 | 13, 15 | syl6eqbr 4677 |
. . 3
⊢ (((A ∪ {Y}) =
(B ∪ {Y}) ∧ ¬
Y ∈
A ∧ ¬
Y ∈
B) → A ≈ B) |
17 | 6, 16 | syl6bi 219 |
. 2
⊢ (X = Y →
(((A ∪ {X}) = (B ∪
{Y}) ∧
¬ X ∈
A ∧ ¬
Y ∈
B) → A ≈ B)) |
18 | | elsni 3758 |
. . . . . . . . 9
⊢ (Y ∈ {X} → Y =
X) |
19 | 18 | eqcomd 2358 |
. . . . . . . 8
⊢ (Y ∈ {X} → X =
Y) |
20 | 19 | necon3ai 2557 |
. . . . . . 7
⊢ (X ≠ Y →
¬ Y ∈
{X}) |
21 | 20 | adantr 451 |
. . . . . 6
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
¬ Y ∈
{X}) |
22 | | ssun2 3428 |
. . . . . . . . 9
⊢ {Y} ⊆ (B ∪ {Y}) |
23 | | enadj.4 |
. . . . . . . . . 10
⊢ Y ∈
V |
24 | 23 | snid 3761 |
. . . . . . . . 9
⊢ Y ∈ {Y} |
25 | 22, 24 | sselii 3271 |
. . . . . . . 8
⊢ Y ∈ (B ∪ {Y}) |
26 | | simpr1 961 |
. . . . . . . 8
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
(A ∪ {X}) = (B ∪
{Y})) |
27 | 25, 26 | syl5eleqr 2440 |
. . . . . . 7
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
Y ∈
(A ∪ {X})) |
28 | | elun 3221 |
. . . . . . 7
⊢ (Y ∈ (A ∪ {X})
↔ (Y ∈ A ∨ Y ∈ {X})) |
29 | 27, 28 | sylib 188 |
. . . . . 6
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
(Y ∈
A ∨
Y ∈
{X})) |
30 | | orel2 372 |
. . . . . 6
⊢ (¬ Y ∈ {X} → ((Y
∈ A ∨ Y ∈ {X}) →
Y ∈
A)) |
31 | 21, 29, 30 | sylc 56 |
. . . . 5
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
Y ∈
A) |
32 | | elsni 3758 |
. . . . . . . 8
⊢ (X ∈ {Y} → X =
Y) |
33 | 32 | necon3ai 2557 |
. . . . . . 7
⊢ (X ≠ Y →
¬ X ∈
{Y}) |
34 | 33 | adantr 451 |
. . . . . 6
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
¬ X ∈
{Y}) |
35 | | ssun2 3428 |
. . . . . . . . 9
⊢ {X} ⊆ (A ∪ {X}) |
36 | | enadj.3 |
. . . . . . . . . 10
⊢ X ∈
V |
37 | 36 | snid 3761 |
. . . . . . . . 9
⊢ X ∈ {X} |
38 | 35, 37 | sselii 3271 |
. . . . . . . 8
⊢ X ∈ (A ∪ {X}) |
39 | 38, 26 | syl5eleq 2439 |
. . . . . . 7
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
X ∈
(B ∪ {Y})) |
40 | | elun 3221 |
. . . . . . 7
⊢ (X ∈ (B ∪ {Y})
↔ (X ∈ B ∨ X ∈ {Y})) |
41 | 39, 40 | sylib 188 |
. . . . . 6
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
(X ∈
B ∨
X ∈
{Y})) |
42 | | orel2 372 |
. . . . . 6
⊢ (¬ X ∈ {Y} → ((X
∈ B ∨ X ∈ {Y}) →
X ∈
B)) |
43 | 34, 41, 42 | sylc 56 |
. . . . 5
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
X ∈
B) |
44 | 31, 43 | jca 518 |
. . . 4
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
(Y ∈
A ∧
X ∈
B)) |
45 | | simpl1 958 |
. . . . . . 7
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ ¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (A ∪ {X}) =
(B ∪ {Y})) |
46 | | simpl2 959 |
. . . . . . 7
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ ¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ¬ X ∈ A) |
47 | | simpl3 960 |
. . . . . . 7
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ ¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → ¬ Y ∈ B) |
48 | | simprl 732 |
. . . . . . 7
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ ¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → Y ∈ A) |
49 | | simprr 733 |
. . . . . . 7
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ ¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → X ∈ B) |
50 | | enadjlem1 6060 |
. . . . . . 7
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ (¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (A ∖ {Y}) = (B ∖ {X})) |
51 | 45, 46, 47, 48, 49, 50 | syl122anc 1191 |
. . . . . 6
⊢ ((((A ∪ {X}) =
(B ∪ {Y}) ∧ ¬
X ∈
A ∧ ¬
Y ∈
B) ∧
(Y ∈
A ∧
X ∈
B)) → (A ∖ {Y}) = (B ∖ {X})) |
52 | 51 | 3adant1 973 |
. . . . 5
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) →
(A ∖
{Y}) = (B ∖ {X})) |
53 | | enadj.1 |
. . . . . . . . . . 11
⊢ A ∈
V |
54 | | snex 4112 |
. . . . . . . . . . 11
⊢ {Y} ∈
V |
55 | 53, 54 | difex 4108 |
. . . . . . . . . 10
⊢ (A ∖ {Y}) ∈
V |
56 | 55 | enrflx 6036 |
. . . . . . . . 9
⊢ (A ∖ {Y}) ≈ (A
∖ {Y}) |
57 | | breq2 4644 |
. . . . . . . . 9
⊢ ((A ∖ {Y}) = (B ∖ {X}) →
((A ∖
{Y}) ≈ (A ∖ {Y}) ↔ (A
∖ {Y})
≈ (B ∖ {X}))) |
58 | 56, 57 | mpbii 202 |
. . . . . . . 8
⊢ ((A ∖ {Y}) = (B ∖ {X}) →
(A ∖
{Y}) ≈ (B ∖ {X})) |
59 | 58 | adantl 452 |
. . . . . . 7
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → (A ∖ {Y}) ≈ (B
∖ {X})) |
60 | 23, 36 | ensn 6059 |
. . . . . . . 8
⊢ {Y} ≈ {X} |
61 | 60 | a1i 10 |
. . . . . . 7
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → {Y} ≈ {X}) |
62 | | incom 3449 |
. . . . . . . . 9
⊢ ((A ∖ {Y}) ∩ {Y}) =
({Y} ∩ (A ∖ {Y})) |
63 | | disjdif 3623 |
. . . . . . . . 9
⊢ ({Y} ∩ (A
∖ {Y}))
= ∅ |
64 | 62, 63 | eqtri 2373 |
. . . . . . . 8
⊢ ((A ∖ {Y}) ∩ {Y}) =
∅ |
65 | 64 | a1i 10 |
. . . . . . 7
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → ((A ∖ {Y}) ∩ {Y}) =
∅) |
66 | | incom 3449 |
. . . . . . . . 9
⊢ ((B ∖ {X}) ∩ {X}) =
({X} ∩ (B ∖ {X})) |
67 | | disjdif 3623 |
. . . . . . . . 9
⊢ ({X} ∩ (B
∖ {X}))
= ∅ |
68 | 66, 67 | eqtri 2373 |
. . . . . . . 8
⊢ ((B ∖ {X}) ∩ {X}) =
∅ |
69 | 68 | a1i 10 |
. . . . . . 7
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → ((B ∖ {X}) ∩ {X}) =
∅) |
70 | | unen 6049 |
. . . . . . 7
⊢ ((((A ∖ {Y}) ≈ (B
∖ {X})
∧ {Y}
≈ {X}) ∧ (((A ∖ {Y}) ∩
{Y}) = ∅
∧ ((B
∖ {X})
∩ {X}) = ∅)) → ((A
∖ {Y})
∪ {Y}) ≈ ((B ∖ {X}) ∪ {X})) |
71 | 59, 61, 65, 69, 70 | syl22anc 1183 |
. . . . . 6
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → ((A ∖ {Y}) ∪ {Y})
≈ ((B ∖ {X}) ∪
{X})) |
72 | | simpl3l 1010 |
. . . . . . 7
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → Y ∈ A) |
73 | | nnsucelrlem4 4428 |
. . . . . . 7
⊢ (Y ∈ A → ((A
∖ {Y})
∪ {Y}) = A) |
74 | 72, 73 | syl 15 |
. . . . . 6
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → ((A ∖ {Y}) ∪ {Y}) =
A) |
75 | | simpl3r 1011 |
. . . . . . 7
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → X ∈ B) |
76 | | nnsucelrlem4 4428 |
. . . . . . 7
⊢ (X ∈ B → ((B
∖ {X})
∪ {X}) = B) |
77 | 75, 76 | syl 15 |
. . . . . 6
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → ((B ∖ {X}) ∪ {X}) =
B) |
78 | 71, 74, 77 | 3brtr3d 4669 |
. . . . 5
⊢ (((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) ∧ (A ∖ {Y}) =
(B ∖
{X})) → A ≈ B) |
79 | 52, 78 | mpdan 649 |
. . . 4
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B) ∧ (Y ∈ A ∧ X ∈ B)) →
A ≈ B) |
80 | 44, 79 | mpd3an3 1278 |
. . 3
⊢ ((X ≠ Y ∧ ((A ∪
{X}) = (B ∪ {Y})
∧ ¬ X
∈ A ∧ ¬ Y ∈ B)) →
A ≈ B) |
81 | 80 | ex 423 |
. 2
⊢ (X ≠ Y →
(((A ∪ {X}) = (B ∪
{Y}) ∧
¬ X ∈
A ∧ ¬
Y ∈
B) → A ≈ B)) |
82 | 17, 81 | pm2.61ine 2593 |
1
⊢ (((A ∪ {X}) =
(B ∪ {Y}) ∧ ¬
X ∈
A ∧ ¬
Y ∈
B) → A ≈ B) |