New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3anandis | GIF version |
Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.) |
Ref | Expression |
---|---|
3anandis.1 | ⊢ (((φ ∧ ψ) ∧ (φ ∧ χ) ∧ (φ ∧ θ)) → τ) |
Ref | Expression |
---|---|
3anandis | ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → φ) | |
2 | simpr1 961 | . 2 ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → ψ) | |
3 | simpr2 962 | . 2 ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → χ) | |
4 | simpr3 963 | . 2 ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → θ) | |
5 | 3anandis.1 | . 2 ⊢ (((φ ∧ ψ) ∧ (φ ∧ χ) ∧ (φ ∧ θ)) → τ) | |
6 | 1, 2, 1, 3, 1, 4, 5 | syl222anc 1198 | 1 ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |