New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simprbda | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
Ref | Expression |
---|---|
pm3.26bda.1 | ⊢ (φ → (ψ ↔ (χ ∧ θ))) |
Ref | Expression |
---|---|
simprbda | ⊢ ((φ ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.26bda.1 | . . 3 ⊢ (φ → (ψ ↔ (χ ∧ θ))) | |
2 | 1 | biimpa 470 | . 2 ⊢ ((φ ∧ ψ) → (χ ∧ θ)) |
3 | 2 | simpld 445 | 1 ⊢ ((φ ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: tfinltfin 4502 |
Copyright terms: Public domain | W3C validator |