New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simpld | GIF version |
Description: Deduction eliminating a conjunct. A translation of natural deduction rule ∧ EL (∧ elimination left), see natded in set.mm. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
simpld.1 | ⊢ (φ → (ψ ∧ χ)) |
Ref | Expression |
---|---|
simpld | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpld.1 | . 2 ⊢ (φ → (ψ ∧ χ)) | |
2 | simpl 443 | . 2 ⊢ ((ψ ∧ χ) → ψ) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simplbi 446 simprd 449 simprbda 606 simp1 955 unssad 3441 preaddccan2 4456 leltfintr 4459 ltfintri 4467 ncfindi 4476 ncfinsn 4477 ncfineleq 4478 tfincl 4493 ncfintfin 4496 tfinltfinlem1 4501 tfinltfin 4502 evenoddnnnul 4515 evenodddisj 4517 eventfin 4518 oddtfin 4519 sfinltfin 4536 1cvsfin 4543 vfintle 4547 vfin1cltv 4548 vfinncvntnn 4549 vfinspsslem1 4551 vfinncsp 4555 brreldmex 4691 epelc 4766 opeliunxp2 4823 br1st 4859 br2nd 4860 brswap2 4861 brco 4884 imasn 5019 fun11iun 5306 fvprc 5326 ndmovordi 5622 elovex1 5650 elfix 5788 pmfun 6016 ncseqnc 6129 elce 6176 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |