NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simpld GIF version

Theorem simpld 445
Description: Deduction eliminating a conjunct. A translation of natural deduction rule EL ( elimination left), see natded in set.mm. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
simpld.1 (φ → (ψ χ))
Assertion
Ref Expression
simpld (φψ)

Proof of Theorem simpld
StepHypRef Expression
1 simpld.1 . 2 (φ → (ψ χ))
2 simpl 443 . 2 ((ψ χ) → ψ)
31, 2syl 15 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  simplbi  446  simprd  449  simprbda  606  simp1  955  unssad  3441  preaddccan2  4456  leltfintr  4459  ltfintri  4467  ncfindi  4476  ncfinsn  4477  ncfineleq  4478  tfincl  4493  ncfintfin  4496  tfinltfinlem1  4501  tfinltfin  4502  evenoddnnnul  4515  evenodddisj  4517  eventfin  4518  oddtfin  4519  sfinltfin  4536  1cvsfin  4543  vfintle  4547  vfin1cltv  4548  vfinncvntnn  4549  vfinspsslem1  4551  vfinncsp  4555  brreldmex  4691  epelc  4766  opeliunxp2  4823  br1st  4859  br2nd  4860  brswap2  4861  brco  4884  imasn  5019  fun11iun  5306  fvprc  5326  ndmovordi  5622  elovex1  5650  elfix  5788  pmfun  6016  ncseqnc  6129  elce  6176  nchoicelem19  6308
  Copyright terms: Public domain W3C validator