![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > biimpa | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimpa | ⊢ ((φ ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | biimpd 198 | . 2 ⊢ (φ → (ψ → χ)) |
3 | 2 | imp 418 | 1 ⊢ ((φ ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simprbda 606 simplbda 607 pm5.1 830 bimsc1 904 biimp3a 1281 euor 2231 euan 2261 cgsexg 2890 cgsex2g 2891 cgsex4g 2892 ceqsex 2893 sbciegft 3076 sbeqalb 3098 syl5sseq 3319 ltfintr 4459 ssfin 4470 vfinspss 4551 f1o00 5317 f1o2d 5727 lectr 6211 nclenn 6249 ncslesuc 6267 fnfrec 6320 |
Copyright terms: Public domain | W3C validator |