New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimpa | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimpa | ⊢ ((φ ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | biimpd 198 | . 2 ⊢ (φ → (ψ → χ)) |
3 | 2 | imp 418 | 1 ⊢ ((φ ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simprbda 606 simplbda 607 pm5.1 830 bimsc1 904 biimp3a 1281 euor 2231 euan 2261 cgsexg 2891 cgsex2g 2892 cgsex4g 2893 ceqsex 2894 sbciegft 3077 sbeqalb 3099 syl5sseq 3320 ltfintr 4460 ssfin 4471 vfinspss 4552 f1o00 5318 f1o2d 5728 lectr 6212 nclenn 6250 ncslesuc 6268 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |