Step | Hyp | Ref
| Expression |
1 | | tfinltfinlem1 4501 |
. 2
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → (⟪M, N⟫
∈ <fin → ⟪ Tfin M,
Tfin N⟫ ∈
<fin )) |
2 | | tfineq 4489 |
. . . . . . . . 9
⊢ (M = ∅ →
Tfin M = Tfin
∅) |
3 | | tfinnul 4492 |
. . . . . . . . 9
⊢ Tfin ∅ =
∅ |
4 | 2, 3 | syl6eq 2401 |
. . . . . . . 8
⊢ (M = ∅ →
Tfin M = ∅) |
5 | | df-ne 2519 |
. . . . . . . . 9
⊢ ( Tfin M
≠ ∅ ↔ ¬ Tfin M =
∅) |
6 | 5 | con2bii 322 |
. . . . . . . 8
⊢ ( Tfin M =
∅ ↔ ¬ Tfin M
≠ ∅) |
7 | 4, 6 | sylib 188 |
. . . . . . 7
⊢ (M = ∅ →
¬ Tfin M ≠ ∅) |
8 | 7 | intnanrd 883 |
. . . . . 6
⊢ (M = ∅ →
¬ ( Tfin M ≠ ∅ ∧ ∃x ∈ Nn Tfin N = (( Tfin
M +c x) +c
1c))) |
9 | | tfinex 4486 |
. . . . . . 7
⊢ Tfin M
∈ V |
10 | | tfinex 4486 |
. . . . . . 7
⊢ Tfin N
∈ V |
11 | | opkltfing 4450 |
. . . . . . 7
⊢ (( Tfin M
∈ V ∧ Tfin N
∈ V) → (⟪ Tfin M,
Tfin N⟫ ∈
<fin ↔ ( Tfin
M ≠ ∅
∧ ∃x ∈ Nn Tfin N = (( Tfin
M +c x) +c
1c)))) |
12 | 9, 10, 11 | mp2an 653 |
. . . . . 6
⊢ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ↔ ( Tfin
M ≠ ∅
∧ ∃x ∈ Nn Tfin N = (( Tfin
M +c x) +c
1c))) |
13 | 8, 12 | sylnibr 296 |
. . . . 5
⊢ (M = ∅ →
¬ ⟪ Tfin M, Tfin
N⟫ ∈ <fin ) |
14 | 13 | pm2.21d 98 |
. . . 4
⊢ (M = ∅ →
(⟪ Tfin M, Tfin
N⟫ ∈ <fin → ⟪M, N⟫
∈ <fin )) |
15 | 14 | a1d 22 |
. . 3
⊢ (M = ∅ →
((M ∈
Nn ∧ N ∈ Nn ) → (⟪ Tfin M,
Tfin N⟫ ∈
<fin → ⟪M,
N⟫ ∈ <fin ))) |
16 | | tfinprop 4490 |
. . . . . . . . . . . . . 14
⊢ ((M ∈ Nn ∧ M ≠ ∅) →
( Tfin M ∈ Nn ∧ ∃y ∈ M ℘1y ∈ Tfin M)) |
17 | 16 | simpld 445 |
. . . . . . . . . . . . 13
⊢ ((M ∈ Nn ∧ M ≠ ∅) →
Tfin M ∈ Nn ) |
18 | | ltfinirr 4458 |
. . . . . . . . . . . . 13
⊢ ( Tfin M
∈ Nn →
¬ ⟪ Tfin M, Tfin
M⟫ ∈ <fin ) |
19 | 17, 18 | syl 15 |
. . . . . . . . . . . 12
⊢ ((M ∈ Nn ∧ M ≠ ∅) →
¬ ⟪ Tfin M, Tfin
M⟫ ∈ <fin ) |
20 | 19 | 3adant2 974 |
. . . . . . . . . . 11
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) →
¬ ⟪ Tfin M, Tfin
M⟫ ∈ <fin ) |
21 | | opkeq2 4061 |
. . . . . . . . . . . . 13
⊢ ( Tfin M =
Tfin N → ⟪ Tfin M,
Tfin M⟫ = ⟪ Tfin M,
Tfin N⟫) |
22 | 21 | eleq1d 2419 |
. . . . . . . . . . . 12
⊢ ( Tfin M =
Tfin N → (⟪ Tfin M,
Tfin M⟫ ∈
<fin ↔ ⟪ Tfin
M, Tfin N⟫ ∈
<fin )) |
23 | 22 | notbid 285 |
. . . . . . . . . . 11
⊢ ( Tfin M =
Tfin N → (¬ ⟪ Tfin M,
Tfin M⟫ ∈
<fin ↔ ¬ ⟪ Tfin M,
Tfin N⟫ ∈
<fin )) |
24 | 20, 23 | syl5ibcom 211 |
. . . . . . . . . 10
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) →
( Tfin M = Tfin
N → ¬ ⟪ Tfin M,
Tfin N⟫ ∈
<fin )) |
25 | 24 | con2d 107 |
. . . . . . . . 9
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) →
(⟪ Tfin M, Tfin
N⟫ ∈ <fin → ¬ Tfin M =
Tfin N)) |
26 | 25 | imp 418 |
. . . . . . . 8
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ ⟪ Tfin M,
Tfin N⟫ ∈
<fin ) → ¬ Tfin
M = Tfin N) |
27 | | tfineq 4489 |
. . . . . . . 8
⊢ (M = N →
Tfin M = Tfin
N) |
28 | 26, 27 | nsyl 113 |
. . . . . . 7
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ ⟪ Tfin M,
Tfin N⟫ ∈
<fin ) → ¬ M =
N) |
29 | | simpl1 958 |
. . . . . . . . . . . . 13
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ N ≠ ∅)) →
M ∈ Nn ) |
30 | | simpl3 960 |
. . . . . . . . . . . . 13
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ N ≠ ∅)) →
M ≠ ∅) |
31 | 29, 30, 17 | syl2anc 642 |
. . . . . . . . . . . 12
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ N ≠ ∅)) →
Tfin M ∈ Nn ) |
32 | | simpl2 959 |
. . . . . . . . . . . . 13
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ N ≠ ∅)) →
N ∈ Nn ) |
33 | | simprr 733 |
. . . . . . . . . . . . 13
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ N ≠ ∅)) →
N ≠ ∅) |
34 | | tfinprop 4490 |
. . . . . . . . . . . . . 14
⊢ ((N ∈ Nn ∧ N ≠ ∅) →
( Tfin N ∈ Nn ∧ ∃y ∈ N ℘1y ∈ Tfin N)) |
35 | 34 | simpld 445 |
. . . . . . . . . . . . 13
⊢ ((N ∈ Nn ∧ N ≠ ∅) →
Tfin N ∈ Nn ) |
36 | 32, 33, 35 | syl2anc 642 |
. . . . . . . . . . . 12
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ N ≠ ∅)) →
Tfin N ∈ Nn ) |
37 | 31, 36 | jca 518 |
. . . . . . . . . . 11
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ N ≠ ∅)) →
( Tfin M ∈ Nn ∧ Tfin N
∈ Nn
)) |
38 | | simprl 732 |
. . . . . . . . . . 11
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ N ≠ ∅)) →
⟪ Tfin M, Tfin
N⟫ ∈ <fin ) |
39 | | ltfinasym 4461 |
. . . . . . . . . . 11
⊢ (( Tfin M
∈ Nn ∧ Tfin
N ∈ Nn ) → (⟪ Tfin M,
Tfin N⟫ ∈
<fin → ¬ ⟪ Tfin N,
Tfin M⟫ ∈
<fin )) |
40 | 37, 38, 39 | sylc 56 |
. . . . . . . . . 10
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ N ≠ ∅)) →
¬ ⟪ Tfin N, Tfin
M⟫ ∈ <fin ) |
41 | 40 | expr 598 |
. . . . . . . . 9
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ ⟪ Tfin M,
Tfin N⟫ ∈
<fin ) → (N ≠ ∅ → ¬ ⟪ Tfin N,
Tfin M⟫ ∈
<fin )) |
42 | | imnan 411 |
. . . . . . . . 9
⊢ ((N ≠ ∅ →
¬ ⟪ Tfin N, Tfin
M⟫ ∈ <fin ) ↔ ¬ (N ≠ ∅ ∧ ⟪ Tfin N,
Tfin M⟫ ∈
<fin )) |
43 | 41, 42 | sylib 188 |
. . . . . . . 8
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ ⟪ Tfin M,
Tfin N⟫ ∈
<fin ) → ¬ (N ≠
∅ ∧
⟪ Tfin N, Tfin
M⟫ ∈ <fin )) |
44 | | opkltfing 4450 |
. . . . . . . . . . . . . 14
⊢ ((N ∈ Nn ∧ M ∈ Nn ) → (⟪N, M⟫
∈ <fin ↔ (N ≠ ∅ ∧ ∃y ∈ Nn M = ((N +c y) +c
1c)))) |
45 | 44 | ancoms 439 |
. . . . . . . . . . . . 13
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → (⟪N, M⟫
∈ <fin ↔ (N ≠ ∅ ∧ ∃y ∈ Nn M = ((N +c y) +c
1c)))) |
46 | 45 | 3adant3 975 |
. . . . . . . . . . . 12
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) →
(⟪N, M⟫ ∈
<fin ↔ (N ≠ ∅ ∧ ∃y ∈ Nn M = ((N
+c y)
+c 1c)))) |
47 | 46 | simprbda 606 |
. . . . . . . . . . 11
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ ⟪N,
M⟫ ∈ <fin ) → N ≠ ∅) |
48 | 47 | adantrl 696 |
. . . . . . . . . 10
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ ⟪N, M⟫
∈ <fin )) → N ≠ ∅) |
49 | | simpl2 959 |
. . . . . . . . . . . 12
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ ⟪N, M⟫
∈ <fin )) → N ∈ Nn ) |
50 | | simpl1 958 |
. . . . . . . . . . . 12
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ ⟪N, M⟫
∈ <fin )) → M ∈ Nn ) |
51 | 49, 50 | jca 518 |
. . . . . . . . . . 11
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ ⟪N, M⟫
∈ <fin )) → (N ∈ Nn ∧ M ∈ Nn )) |
52 | | simprr 733 |
. . . . . . . . . . 11
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ ⟪N, M⟫
∈ <fin )) →
⟪N, M⟫ ∈
<fin ) |
53 | | tfinltfinlem1 4501 |
. . . . . . . . . . 11
⊢ ((N ∈ Nn ∧ M ∈ Nn ) → (⟪N, M⟫
∈ <fin → ⟪ Tfin N,
Tfin M⟫ ∈
<fin )) |
54 | 51, 52, 53 | sylc 56 |
. . . . . . . . . 10
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ ⟪N, M⟫
∈ <fin )) → ⟪ Tfin N,
Tfin M⟫ ∈
<fin ) |
55 | 48, 54 | jca 518 |
. . . . . . . . 9
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ (⟪ Tfin M,
Tfin N⟫ ∈
<fin ∧ ⟪N, M⟫
∈ <fin )) → (N ≠ ∅ ∧ ⟪ Tfin N,
Tfin M⟫ ∈
<fin )) |
56 | 55 | expr 598 |
. . . . . . . 8
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ ⟪ Tfin M,
Tfin N⟫ ∈
<fin ) → (⟪N,
M⟫ ∈ <fin → (N ≠ ∅ ∧ ⟪ Tfin N,
Tfin M⟫ ∈
<fin ))) |
57 | 43, 56 | mtod 168 |
. . . . . . 7
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ ⟪ Tfin M,
Tfin N⟫ ∈
<fin ) → ¬ ⟪N, M⟫
∈ <fin ) |
58 | | ltfintri 4467 |
. . . . . . . 8
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) →
(⟪M, N⟫ ∈
<fin ∨ M = N ∨ ⟪N,
M⟫ ∈ <fin )) |
59 | 58 | adantr 451 |
. . . . . . 7
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ ⟪ Tfin M,
Tfin N⟫ ∈
<fin ) → (⟪M,
N⟫ ∈ <fin
∨ M = N ∨
⟪N, M⟫ ∈
<fin )) |
60 | 28, 57, 59 | ecase23d 1285 |
. . . . . 6
⊢ (((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) ∧ ⟪ Tfin M,
Tfin N⟫ ∈
<fin ) → ⟪M,
N⟫ ∈ <fin ) |
61 | 60 | ex 423 |
. . . . 5
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) →
(⟪ Tfin M, Tfin
N⟫ ∈ <fin → ⟪M, N⟫
∈ <fin )) |
62 | 61 | 3expa 1151 |
. . . 4
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ M ≠ ∅) →
(⟪ Tfin M, Tfin
N⟫ ∈ <fin → ⟪M, N⟫
∈ <fin )) |
63 | 62 | expcom 424 |
. . 3
⊢ (M ≠ ∅ →
((M ∈
Nn ∧ N ∈ Nn ) → (⟪ Tfin M,
Tfin N⟫ ∈
<fin → ⟪M,
N⟫ ∈ <fin ))) |
64 | 15, 63 | pm2.61ine 2593 |
. 2
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → (⟪ Tfin M,
Tfin N⟫ ∈
<fin → ⟪M,
N⟫ ∈ <fin )) |
65 | 1, 64 | impbid 183 |
1
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → (⟪M, N⟫
∈ <fin ↔ ⟪ Tfin M,
Tfin N⟫ ∈
<fin )) |