New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl333anc | GIF version |
Description: A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (φ → ψ) |
sylXanc.2 | ⊢ (φ → χ) |
sylXanc.3 | ⊢ (φ → θ) |
sylXanc.4 | ⊢ (φ → τ) |
sylXanc.5 | ⊢ (φ → η) |
sylXanc.6 | ⊢ (φ → ζ) |
sylXanc.7 | ⊢ (φ → σ) |
sylXanc.8 | ⊢ (φ → ρ) |
sylXanc.9 | ⊢ (φ → μ) |
syl333anc.10 | ⊢ (((ψ ∧ χ ∧ θ) ∧ (τ ∧ η ∧ ζ) ∧ (σ ∧ ρ ∧ μ)) → λ) |
Ref | Expression |
---|---|
syl333anc | ⊢ (φ → λ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (φ → ψ) | |
2 | sylXanc.2 | . 2 ⊢ (φ → χ) | |
3 | sylXanc.3 | . 2 ⊢ (φ → θ) | |
4 | sylXanc.4 | . 2 ⊢ (φ → τ) | |
5 | sylXanc.5 | . 2 ⊢ (φ → η) | |
6 | sylXanc.6 | . 2 ⊢ (φ → ζ) | |
7 | sylXanc.7 | . . 3 ⊢ (φ → σ) | |
8 | sylXanc.8 | . . 3 ⊢ (φ → ρ) | |
9 | sylXanc.9 | . . 3 ⊢ (φ → μ) | |
10 | 7, 8, 9 | 3jca 1132 | . 2 ⊢ (φ → (σ ∧ ρ ∧ μ)) |
11 | syl333anc.10 | . 2 ⊢ (((ψ ∧ χ ∧ θ) ∧ (τ ∧ η ∧ ζ) ∧ (σ ∧ ρ ∧ μ)) → λ) | |
12 | 1, 2, 3, 4, 5, 6, 10, 11 | syl331anc 1207 | 1 ⊢ (φ → λ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |