New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl3an1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an1.1 | ⊢ (φ → ψ) |
syl3an1.2 | ⊢ ((ψ ∧ χ ∧ θ) → τ) |
Ref | Expression |
---|---|
syl3an1 | ⊢ ((φ ∧ χ ∧ θ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | 3anim1i 1138 | . 2 ⊢ ((φ ∧ χ ∧ θ) → (ψ ∧ χ ∧ θ)) |
3 | syl3an1.2 | . 2 ⊢ ((ψ ∧ χ ∧ θ) → τ) | |
4 | 2, 3 | syl 15 | 1 ⊢ ((φ ∧ χ ∧ θ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: syl3an1b 1218 syl3an1br 1221 ltfintri 4467 lecadd2 6267 |
Copyright terms: Public domain | W3C validator |