NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl3an1br GIF version

Theorem syl3an1br 1221
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an1br.1 (ψφ)
syl3an1br.2 ((ψ χ θ) → τ)
Assertion
Ref Expression
syl3an1br ((φ χ θ) → τ)

Proof of Theorem syl3an1br
StepHypRef Expression
1 syl3an1br.1 . . 3 (ψφ)
21biimpri 197 . 2 (φψ)
3 syl3an1br.2 . 2 ((ψ χ θ) → τ)
42, 3syl3an1 1215 1 ((φ χ θ) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator