New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl3an3br | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3br.1 | ⊢ (θ ↔ φ) |
syl3an3br.2 | ⊢ ((ψ ∧ χ ∧ θ) → τ) |
Ref | Expression |
---|---|
syl3an3br | ⊢ ((ψ ∧ χ ∧ φ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3br.1 | . . 3 ⊢ (θ ↔ φ) | |
2 | 1 | biimpri 197 | . 2 ⊢ (φ → θ) |
3 | syl3an3br.2 | . 2 ⊢ ((ψ ∧ χ ∧ θ) → τ) | |
4 | 2, 3 | syl3an3 1217 | 1 ⊢ ((ψ ∧ χ ∧ φ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |