NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl3an3 GIF version

Theorem syl3an3 1217
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3.1 (φθ)
syl3an3.2 ((ψ χ θ) → τ)
Assertion
Ref Expression
syl3an3 ((ψ χ φ) → τ)

Proof of Theorem syl3an3
StepHypRef Expression
1 syl3an3.1 . . 3 (φθ)
2 syl3an3.2 . . . 4 ((ψ χ θ) → τ)
323exp 1150 . . 3 (ψ → (χ → (θτ)))
41, 3syl7 63 . 2 (ψ → (χ → (φτ)))
543imp 1145 1 ((ψ χ φ) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  syl3an3b  1220  syl3an3br  1223  vtoclgft  2906  fvopab4t  5386
  Copyright terms: Public domain W3C validator