New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl3an3 | GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3.1 | ⊢ (φ → θ) |
syl3an3.2 | ⊢ ((ψ ∧ χ ∧ θ) → τ) |
Ref | Expression |
---|---|
syl3an3 | ⊢ ((ψ ∧ χ ∧ φ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 | . . 3 ⊢ (φ → θ) | |
2 | syl3an3.2 | . . . 4 ⊢ ((ψ ∧ χ ∧ θ) → τ) | |
3 | 2 | 3exp 1150 | . . 3 ⊢ (ψ → (χ → (θ → τ))) |
4 | 1, 3 | syl7 63 | . 2 ⊢ (ψ → (χ → (φ → τ))) |
5 | 4 | 3imp 1145 | 1 ⊢ ((ψ ∧ χ ∧ φ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: syl3an3b 1220 syl3an3br 1223 vtoclgft 2906 fvopab4t 5386 |
Copyright terms: Public domain | W3C validator |