NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl3anl2 GIF version

Theorem syl3anl2 1231
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
syl3anl2.1 (φχ)
syl3anl2.2 (((ψ χ θ) τ) → η)
Assertion
Ref Expression
syl3anl2 (((ψ φ θ) τ) → η)

Proof of Theorem syl3anl2
StepHypRef Expression
1 syl3anl2.1 . . 3 (φχ)
2 syl3anl2.2 . . . 4 (((ψ χ θ) τ) → η)
32ex 423 . . 3 ((ψ χ θ) → (τη))
41, 3syl3an2 1216 . 2 ((ψ φ θ) → (τη))
54imp 418 1 (((ψ φ θ) τ) → η)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  syl3anr2  1235
  Copyright terms: Public domain W3C validator