New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl3anl2 | GIF version |
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
syl3anl2.1 | ⊢ (φ → χ) |
syl3anl2.2 | ⊢ (((ψ ∧ χ ∧ θ) ∧ τ) → η) |
Ref | Expression |
---|---|
syl3anl2 | ⊢ (((ψ ∧ φ ∧ θ) ∧ τ) → η) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anl2.1 | . . 3 ⊢ (φ → χ) | |
2 | syl3anl2.2 | . . . 4 ⊢ (((ψ ∧ χ ∧ θ) ∧ τ) → η) | |
3 | 2 | ex 423 | . . 3 ⊢ ((ψ ∧ χ ∧ θ) → (τ → η)) |
4 | 1, 3 | syl3an2 1216 | . 2 ⊢ ((ψ ∧ φ ∧ θ) → (τ → η)) |
5 | 4 | imp 418 | 1 ⊢ (((ψ ∧ φ ∧ θ) ∧ τ) → η) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: syl3anr2 1235 |
Copyright terms: Public domain | W3C validator |