NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl3an2 GIF version

Theorem syl3an2 1216
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an2.1 (φχ)
syl3an2.2 ((ψ χ θ) → τ)
Assertion
Ref Expression
syl3an2 ((ψ φ θ) → τ)

Proof of Theorem syl3an2
StepHypRef Expression
1 syl3an2.1 . . 3 (φχ)
2 syl3an2.2 . . . 4 ((ψ χ θ) → τ)
323exp 1150 . . 3 (ψ → (χ → (θτ)))
41, 3syl5 28 . 2 (ψ → (φ → (θτ)))
543imp 1145 1 ((ψ φ θ) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  syl3an2b  1219  syl3an2br  1222  syl3anl2  1231
  Copyright terms: Public domain W3C validator