| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > syl3an2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 | ⊢ (φ → χ) |
| syl3an2.2 | ⊢ ((ψ ∧ χ ∧ θ) → τ) |
| Ref | Expression |
|---|---|
| syl3an2 | ⊢ ((ψ ∧ φ ∧ θ) → τ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 | . . 3 ⊢ (φ → χ) | |
| 2 | syl3an2.2 | . . . 4 ⊢ ((ψ ∧ χ ∧ θ) → τ) | |
| 3 | 2 | 3exp 1150 | . . 3 ⊢ (ψ → (χ → (θ → τ))) |
| 4 | 1, 3 | syl5 28 | . 2 ⊢ (ψ → (φ → (θ → τ))) |
| 5 | 4 | 3imp 1145 | 1 ⊢ ((ψ ∧ φ ∧ θ) → τ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: syl3an2b 1219 syl3an2br 1222 syl3anl2 1231 |
| Copyright terms: Public domain | W3C validator |