NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl3anl3 GIF version

Theorem syl3anl3 1232
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
syl3anl3.1 (φθ)
syl3anl3.2 (((ψ χ θ) τ) → η)
Assertion
Ref Expression
syl3anl3 (((ψ χ φ) τ) → η)

Proof of Theorem syl3anl3
StepHypRef Expression
1 syl3anl3.1 . . 3 (φθ)
213anim3i 1139 . 2 ((ψ χ φ) → (ψ χ θ))
3 syl3anl3.2 . 2 (((ψ χ θ) τ) → η)
42, 3sylan 457 1 (((ψ χ φ) τ) → η)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator